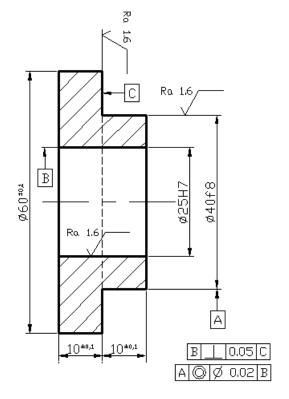


Royaume du Maroc Université Hassan II Aïn-Chock ECOLE NATIONALE SUPERIEURE D'ELECTRICITE ET DE MECANIQUE

المملكة المغربية جامعة الحسن الثاني عين الشق المدرسة الوطنية العليا للكهرباء والميكانيك

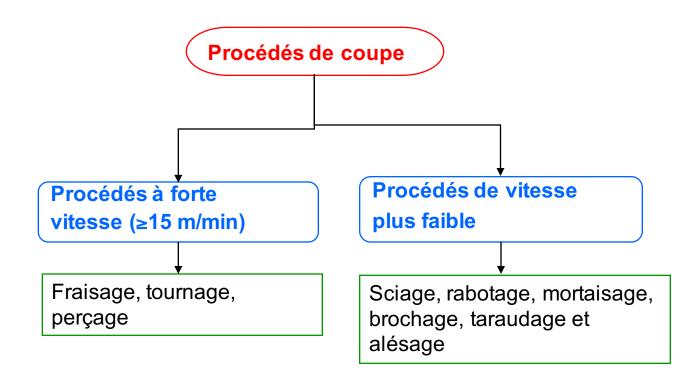

- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages Soudage
- Traitements et revêtement superficiels

<u>Usinage</u>:

On appelle usinage toute opération de mise en forme par enlèvement de matière destinée à conférer à une pièce des dimensions et un état de surface (écart de forme et rugosité) situés dans une fourchette de tolérance donnée.

Principaux procédés :

- Procédés de coupe
- Procédés par abrasion
- Procédés physico-chimiques

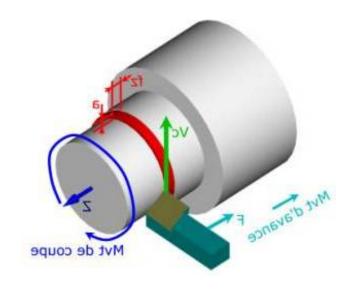


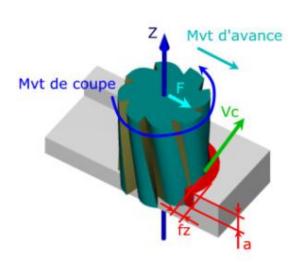
- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages : Soudage
- Traitements et revêtement superficiels

<u>Usinage</u>:

Procédés de coupe

L'enlèvement de matière se fait par action mécanique d'un outil coupant.





- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages : Soudage
- Traitements et revêtement superficiels

Usinage:

Procédés de coupe

Tournage

Fraisage

- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages : Soudage
- Traitements et revêtement superficiels

<u>Usinage</u>:

Procédés physico-chimiques

L'enlèvement de matière est réalisé par des actions non mécaniques:

Action thermoélectrique :

- d'un arc électrique :électroérosion
- d'un plasma
- d'un faisceau de lumière cohérente : laser

Action thermochimique:

de la flamme d'un chalumeau (oxycoupage)

Réaction électrochimique dans un électrolyte

usinage électrochimique

Réaction chimique avec un liquide (usinage chimique).

usinage chimique

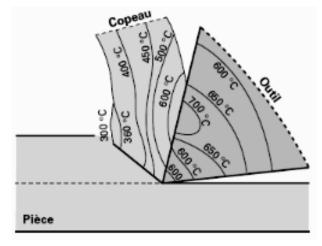
- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages : Soudage
- Traitements et revêtement superficiels

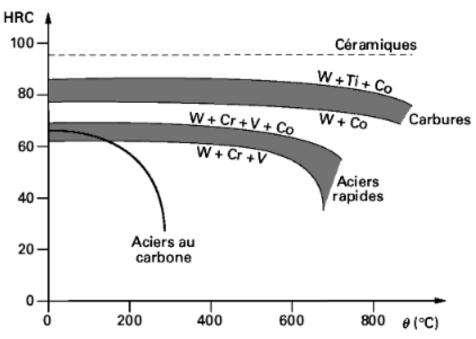
Matériaux pour outils de coupe :

Sollicitations:

Les contraintes auxquelles sont soumis les outils de coupe :

- contraintes mécaniques (effort de coupe)
- contraintes thermiques :(dilatation, chocs ou fatigue thermique)




- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques
 d'assemblages :
 Soudage
- Traitements et revêtement superficiels

Matériaux pour outils de coupe :

Effet de la température

- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages : Soudage
- Traitements et revêtement superficiels

Matériaux pour outils de coupe :

- Les aciers rapides
- Les carbures métalliques
- Les céramiques de coupe
- Les cermets
- Le diamant industriel

- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages : Soudage
- Traitements et revêtement superficiels

Matériaux pour outils de coupe :

Les aciers rapides :

Ce sont des aciers à fort pourcentage de **carbone** (0.9 à 1.5) qui contiennent des métaux comme : le **tungstène**, le **chrome**, le **vanadium**, etc., dont le but est d'améliorer la dureté et la résistance à l'usure.

- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages Soudage
- Traitements et revêtement superficiels

Matériaux pour outils de coupe :

Les aciers rapides :

Aciers rapides au cobalt :HS 18-1-1-5

Le cobalt permet de stabiliser les carbures à chaud et par conséquent la capacité à supporter les vitesses de coupe plus élevées.

Aciers rapides au molybdène :HS 2-9-1-8, HS 6-5-2-5

- Le molybdène a une influence double de celle du tungstène
- Leur résistance aux chocs est supérieure à celle des aciers au tungstène

Aciers rapides surcarburés : HS 6-5-4, HS 7-4-2-5, HS 2-9-1-8

la teneur en carbone est supérieure à 1 %,

- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages : Soudage
- Traitements et revêtement superficiels

Les aciers rapides :

Aciers rapides resulfurés :

Le soufre (0,10 et 0,20 %.):

- permet d'améliorer l'aptitude à l'usinage et au meulage.
- permet d'améliorer l'état de surface après usinage des outils (molettes de tournage, fraises mères à denture non rectifiée, fraises pour entrée de denture, etc.)

Les aciers rapides :

Désignation de la nuance		Composition chimique (%)					
EN 10027-1	AISI	С	Cr	w	Мо	v	Co
Aciers de base							
HS 18-0-1	T1	0,80	4	18		1,1	
HS 6-5-2	M2	0,85	4	6	5	2	
HS 2-8-1	M1	0,85	4	2	8	1,2	
HS 2-9-2	M7	1,00	4	2	9	2	
Aciers surcarburés							
HS 6-5-3	M3 type 2	1,20	4	6	5	3	
HS 6-5-4	M4	1,30	4,5	6	5	4	
Aciers au cobalt							
HS 18-1-1-5	T4	0,80	4	18	0,8	1,3	5
HS 18-0-2-10	T5	0,80	4	18		1,5	10
HS 6-5-2-5	M35	0,85	4	6	5	2	5
Aciers au cobalt à haute teneur en carbone							
HS 7-4-2-5	M41	1,10	4	7	4	2	5
HS 2-9-1-8	M42	1,10	4	1,6	9	1,1	8
Aciers surcarburés au cobalt							
HS 12-1-5-5	T15	1,60	4,5	12	0,8	5	5
HS 10-4-3-10	-	1,30	4	9,5	3,6	3,2	10
HS 7-6-3-12	M44	1,30	4	7	6	3,2	12

- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques
 d'assemblages :
 Soudage
- Traitements et revêtement superficiels

Matériaux pour outils de coupe :

Traitement de surface des outil de coupe :

Objectif:

Accroître la dureté superficielle de l'outil et par suite améliorer les performances des outils :

- en augmentant Vc et f
- en diminuant l'usure,

Abaisser le prix de revient des pièces usinées

- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages Soudage
- Traitements et revêtement superficiels

Matériaux pour outils de coupe :

Traitement de surface des outil de coupe :

Comment?

Diffusion d'un élément durcissant l'acier

Nitruration:

Enrichir superficiellement l'acier en azote (dureté augmente de 50%).

Steam Homo:

Traitement d'oxydation superficielle dans la vapeur d'eau surchauffée (500°C) ► Formation d'une couche adhérente d'oxyde de fer magnétique (Fe₃O₄) d'environ 2 mm d'épaisseur.

Dépôt d'un matériau dur

Revêtements durs:

techniques de dépôt ionique permettant de déposer des couches dures telles que :

- (TiN) le nitrure de titane (de couleur dorée)
- (TiC) le carbure de titane (de couleur argentée)

- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages Soudage
- Traitements et revêtement superficiels

Matériaux pour outils de coupe :

Carbures métalliques :

- une grande dureté
- une haute résistance à l'usure
- conservent leur dureté jusqu'à 900°C environ
- vitesses de coupe quatre à six fois supérieures à celles des aciers rapides.

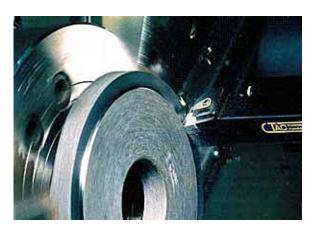
Ils se présentent sous forme de plaquettes brasées ou fixées mécaniquement sur un corps d'outil en acier.

- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages : Soudage
- Traitements et revêtement superficiels

Matériaux pour outils de coupe :

Carbures métalliques :

- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblagesSoudage
- Traitements et revêtement superficiels



Matériaux pour outils de coupe :

Céramiques :

Il existe deux grandes familles de céramiques :

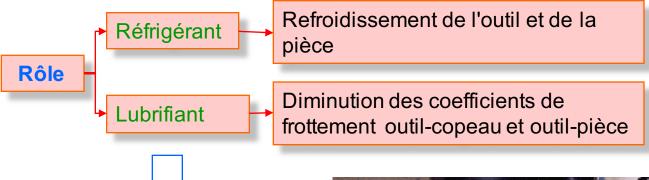
- Les céramiques à base d'alumine pure
- Les céramiques mélangée avec d'autres oxydes (zircone ZrO2), des carbures (SiC, TiC) ou des nitrures (Si3N4).
- Elles Supportent des vitesses de coupe élevées à des températures importantes.
- Elles résistent bien à l'usure mais mal aux chocs.
- Elles sont souvent utilisées sur des machines puissantes pour l'usinage des métaux ferreux.

- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages : Soudage
- Traitements et revêtement superficiels

Matériaux pour outils de coupe :

Diamants industriels:

- C'est le plus dur des matériaux connus.
- Il se présente sous forme de grain brasé à l'extrémité d'un corps en acier.
- On l'utilise pour certains travaux de finition.
- Il peut usiner tous les métaux quelle que soit leur dureté.
- Son prix de revient est élevé.



- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages Soudage
- Traitements et revêtement superficiels

ENSEM Casablanca

Fluide de coupe :

On désigne par fluide de coupe un liquide (ou un gaz) qui est appliqué par arrosage sur la partie active d'un outil.

- Augmenter la durée de vie de l'outil;
- Augmenter un des paramètres de la coupe ;
- obtenir un bon état de surface ;

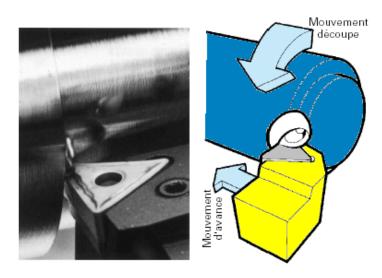
- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages : Soudage
- Traitements et revêtement superficiels

Fluide de coupe :

On distingue deux grandes familles de fluides de coupe :

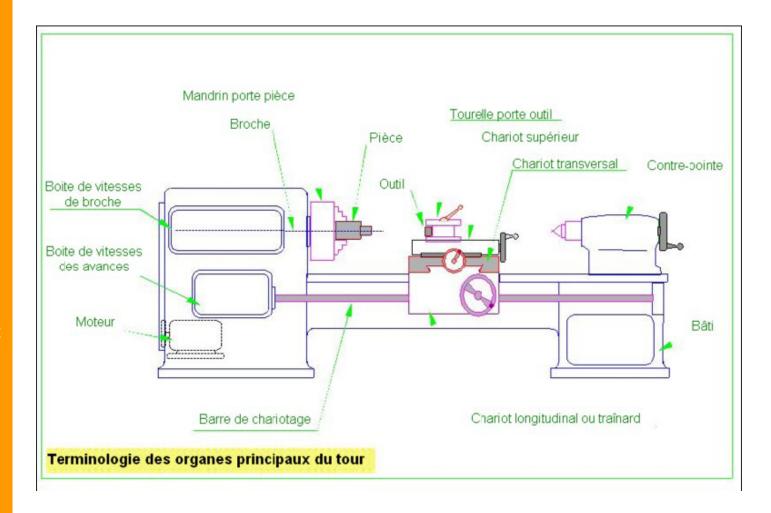
- Les huiles de coupe entières (c'est à dire sans eau) ; il s'agit d'huiles minérales dans la plupart des cas et plus rarement d'huiles synthétiques ;
- Les fluides aqueux (fluides de coupe à base d'eau).

- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques
 d'assemblages :
 Soudage
- Traitements et revêtement superficiels


Tournage:

Définition:

Le tournage est un procédé de fabrication mécanique par coupe mettant en jeu des outils à arête unique.


La pièce est animée d'un mouvement de rotation appelé mouvement de coupe Mc.

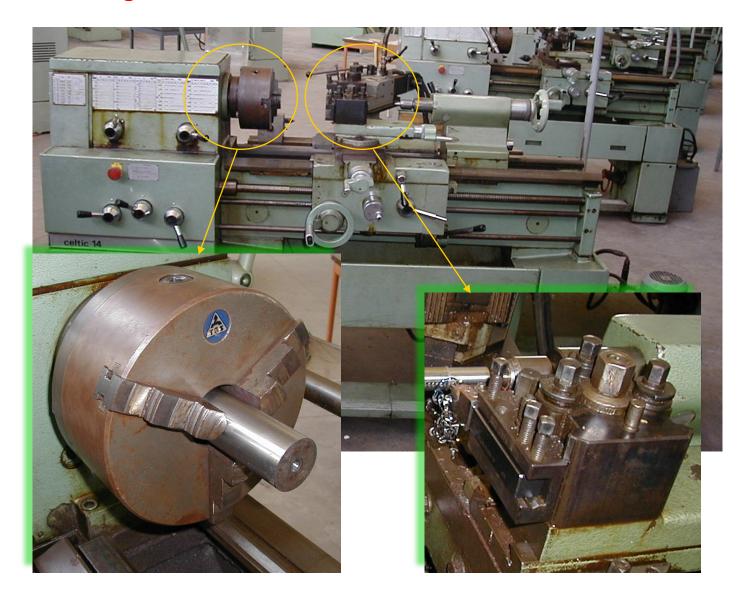
L'outil est animé d'un mouvement de translation (rectiligne ou non) appelé mouvement d'avance Mf.

- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages Soudage
- Traitements et revêtement superficiels

Tournage:

- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages : Soudage
- Traitements et revêtement superficiels

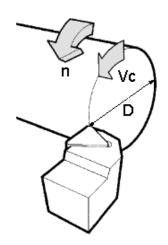
Tournage:



- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages : Soudage
- Traitements et revêtement superficiels

Tournage:

- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques
 d'assemblages :
 Soudage
- Traitements et revêtement superficiels



Tournage - Conditions de coupe :

Vitesse de coupe Vc

Elle est choisi en en fonction de :

- matériau de la pièce;
- matériau de l'outil;
- lubrification;
- puissance de la machine.

Matière usinée	Vitesse de coupe en m/mn					
Wrattere usinee	Outil en acier rapide	Outil en carbure				
Acier très dur Fonte dure	15	70				
Acier dur fonte	22	105				
Acier mi-dur	35	140				
Bronze	50	200				
Alliages légers	75	800				

- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques
 d'assemblages :
 Soudage
- Traitements et revêtement superficiels

Tournage - Conditions de coupe :

Vitesse de rotation de la pièce

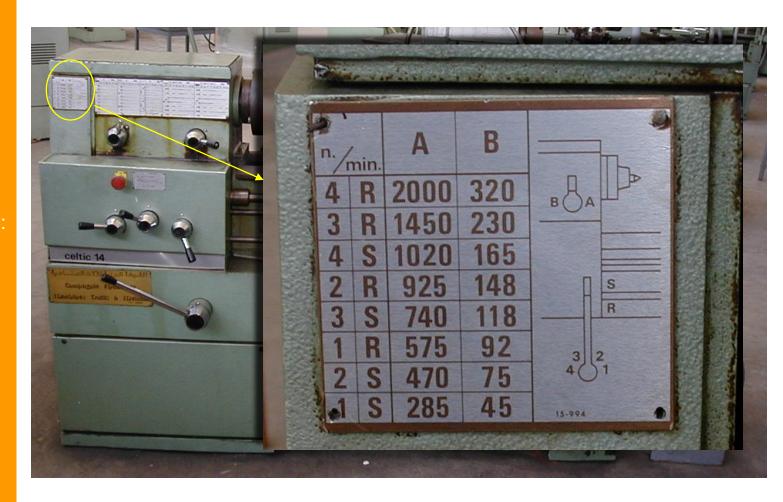
$$N_{\text{(tr/mn)}} = \frac{1000 \ V_{c(m \ / \ mn)}}{\pi D_{(mm)}}$$

Exemple:

D = 50 mm

Vc = 70 m/mn

=> N = 445 tr/mn

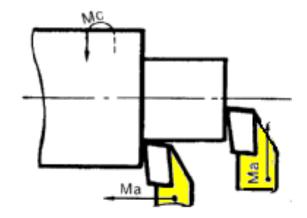


- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages Soudage
- Traitements et revêtement superficiels

Tournage - Conditions de coupe :

Réglage de la vitesse de rotation de la pièce

- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques
 d'assemblages :
 Soudage
- Traitements et revêtement superficiels


<u>Tournage - Conditions de coupe :</u>

Vitesse d'avance de l'outil

Elle dépend de :

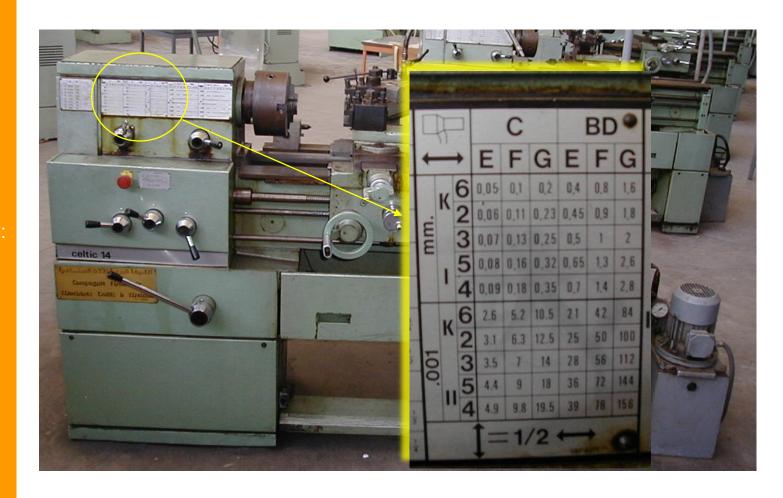
- Etat de surface;
- Type d'outil;
- Matière de la pièce.

$$f(mm/tr) = \frac{a(mm)}{8}$$

Exemple:

$$a = 1 \text{ mm}$$

$$=> f = 0.125 \text{ mm/tr}$$



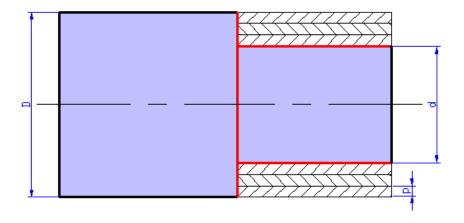
- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages Soudage
- Traitements et revêtement superficiels

Tournage - Conditions de coupe :

Vitesse d'avance de l'outil

- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages : Soudage
- Traitements et revêtement superficiels

Tournage - Conditions de coupe :


Profondeur de passe :

En ébauche:

1 à 2 mm

Finition

0.5 à 1mm

- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages Soudage
- Traitements et revêtement superficiels

Tournage - Conditions de coupe :

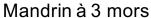
Arrosage:

- Le lubrifiant est un mélange d'huile et d'eau.
- Refroidissement
- Amélioration de l'état de surface
- Pour les outils carbures on peut usiner sans lubrifiant avec une vitesse :

$$Vc' = 2/3 Vc$$

- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages : Soudage
- Traitements et revêtement superficiels

Tournage - Montage de l'outil :

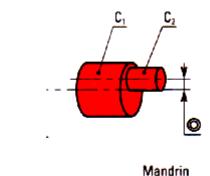


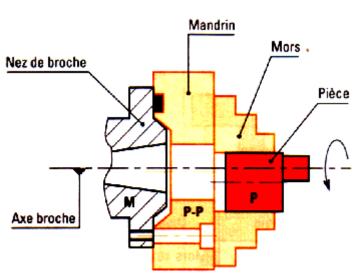

- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques
 d'assemblages :
 Soudage
- Traitements et revêtement superficiels

Tournage - Montage de la pièce :

Le mandrin:

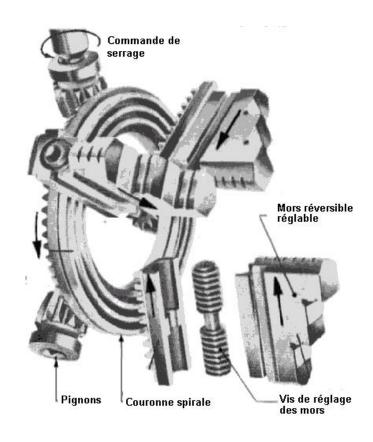
Mandrin à 4 mors


- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages Soudage
- Traitements et revêtement superficiels


Tournage - Montage de la pièce :

Le mandrin :

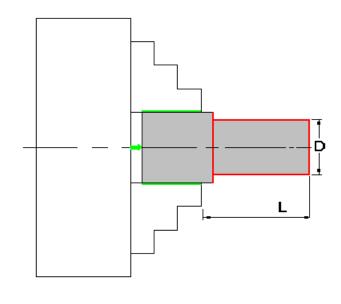
Mandrin à 4 mors à serrage indépendant



- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages : Soudage
- Traitements et revêtement superficiels

Tournage - Montage de la pièce :

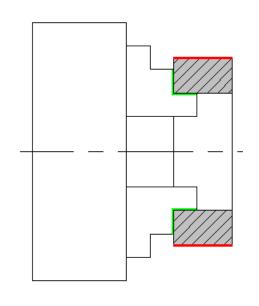
Le mandrin :


Mandrin à 3 mors

- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques
 d'assemblages :
 Soudage
- Traitements et revêtement superficiels

Tournage - Montage de la pièce :

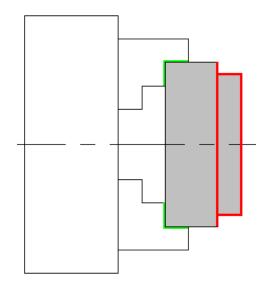
Type de montage de la pièce : Montage en l'air


Mors montés à l'endroit

- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques
 d'assemblages :
 Soudage
- Traitements et revêtement superficiels

Tournage - Montage de la pièce :

Type de montage de la pièce : Montage en l'air

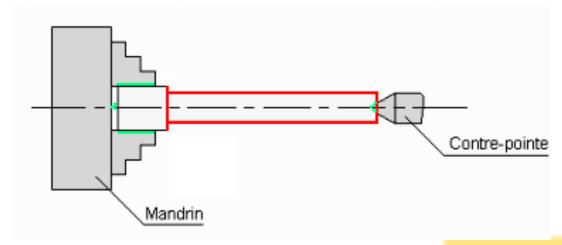


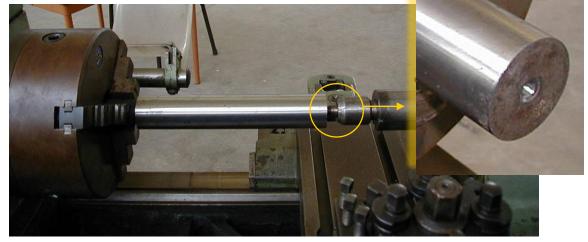
- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages : Soudage
- Traitements et revêtement superficiels

ENSEM Casablanca

Tournage - Montage de la pièce :

Type de montage de la pièce : Montage en l'air


Mors montés à l'envers


- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages : Soudage
- Traitements et revêtement superficiels

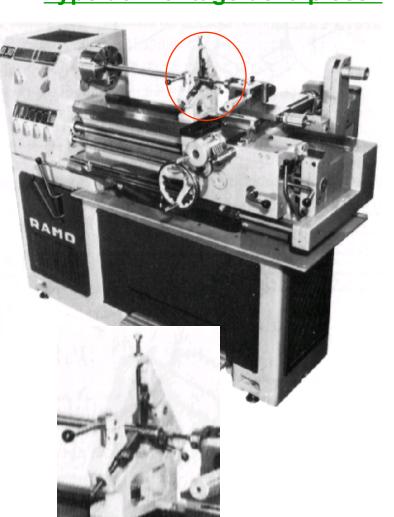
Tournage - Montage de la pièce :

Type de montage de la pièce : Montage mixte

- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages Soudage
- Traitements et revêtement superficiels

Tournage - Montage de la pièce :

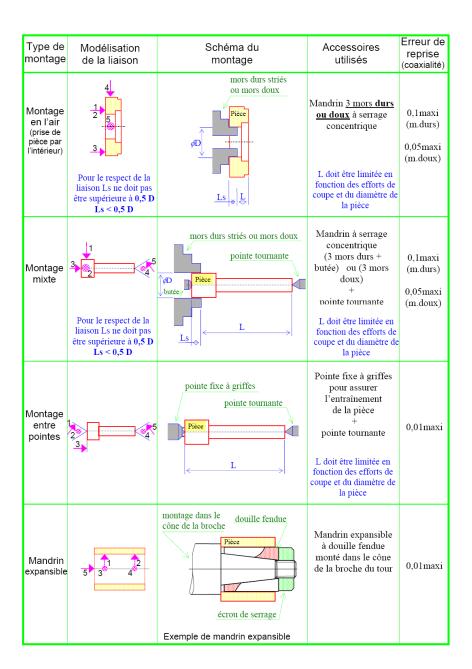
Type de montage de la pièce : Montage entre pointes



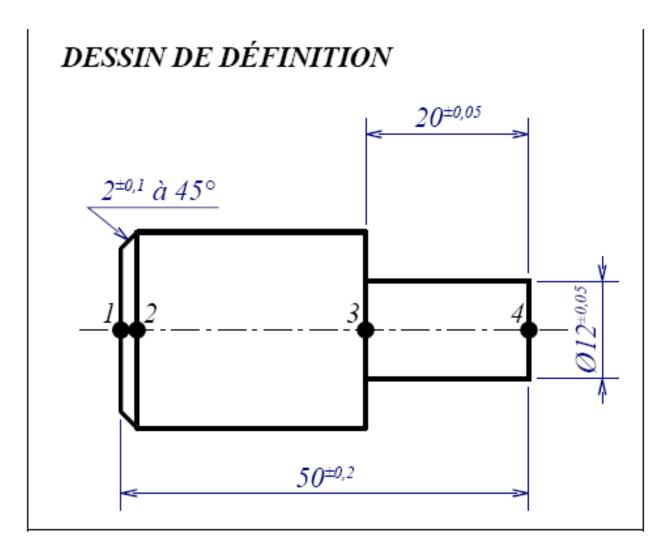
- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages Soudage
- Traitements et revêtement superficiels

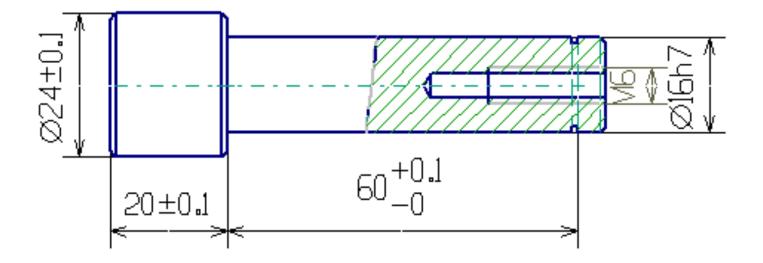
Tournage - Montage de la pièce :

Type de montage de la pièce : Lunette


- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages Soudage
- Traitements et revêtement superficiels

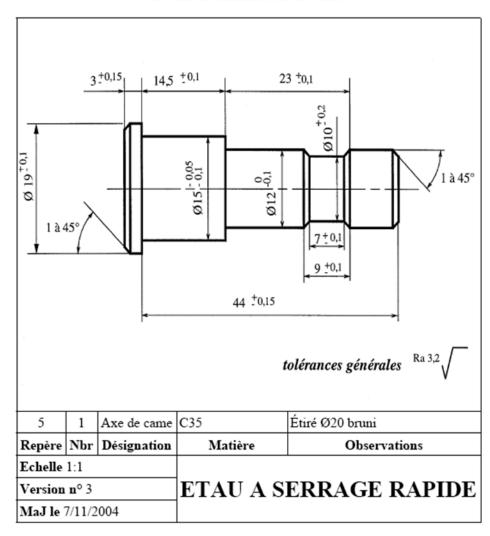
Type de montage	Modélisation de la liaison	Schéma du montage	Accessoires utilisés	Erreur de reprise (coaxialité)
Montage en l'air	5 3 4	butée mors durs striés	Mandrin <u>3 mors durs</u> à serrage concentrique + butée	0,1maxi
	Pour le respect de la liaison Ls ne doit pas être inférieure à 0,7 D. Ls > D souhaitable	∠L5→ ∠L→	L doit être limitée en fonction des efforts de coupe et du diamètre de la pièce	
Montage en l'air	1 2 5 3 4	mors doux usinables	Mandrin <u>3 mors</u> doux à serrage concentrique	0,05maxi
	Pour le respect de la liaison Ls ne doit pas être inférieure à 0,7 D. Ls > D souhaitable	∠Ls → ∠L	L doit être limitée en fonction des efforts de coupe et du diamètre de la pièce	


- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages Soudage
- Traitements et revêtement superficiels



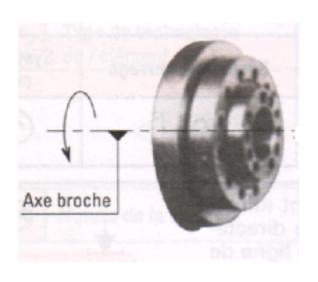
- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages : Soudage
- Traitements et revêtement superficiels

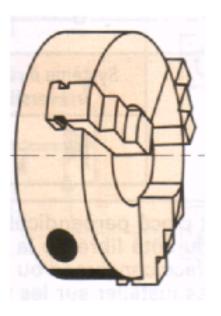
- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages Soudage
- Traitements et revêtement superficiels



- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages : Soudage
- Traitements et revêtement superficiels

Tournage -

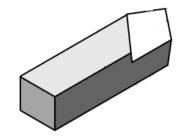

Dessin de définition axe de came



- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages : Soudage
- Traitements et revêtement superficiels

Tournage - Montage de la pièce :

Type de montage de la pièce : Montage d'usinage

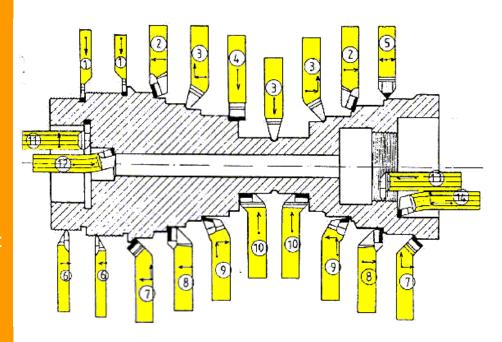

- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages Soudage
- Traitements et revêtement superficiels

<u>Tournage – Outils de coupe :</u>

Aciers rapides:

- Outils monoblocs
- Outils de forme

Carbures:

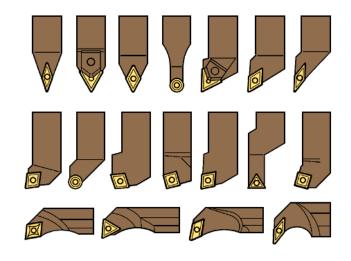

- sont obtenus par frittage de substance dure (carbures de tungstène, de titane...) et de substance liante (cobalt...) qui confère sa ténacité à la plaquette.
- outils à plaquette rapportée ou brasée

- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques
 d'assemblages :
 Soudage
- Traitements et revêtement superficiels

<u>Tournage – Outils de coupe :</u>

Aciers rapides:

- 1°) Outil à saigner
- 2°) Outil à charioter droit
- 3°) Outil à retoucher
- 4°) Outil pelle
- 5°) Outil à retoucher
- 6°) Outil à fileter
- 7°) Outil coudé à charioter
- 8°) Outil couteau
- 9°) Outil à dresser d'angle
- 10°) Outil à dresser les faces
- 11°) Outil à chambrer
- 12°) Outil à aléser
- 13°) Outil à fileter intérieurement
- 14°) Outil à aléser-dresser

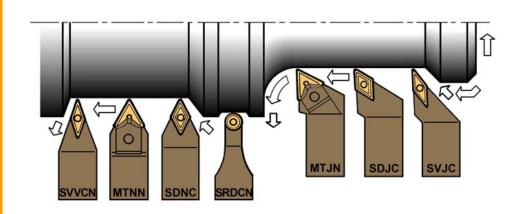


- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages : Soudage
- Traitements et revêtement superficiels

<u>Tournage – Outils de coupe :</u>

Carbures:

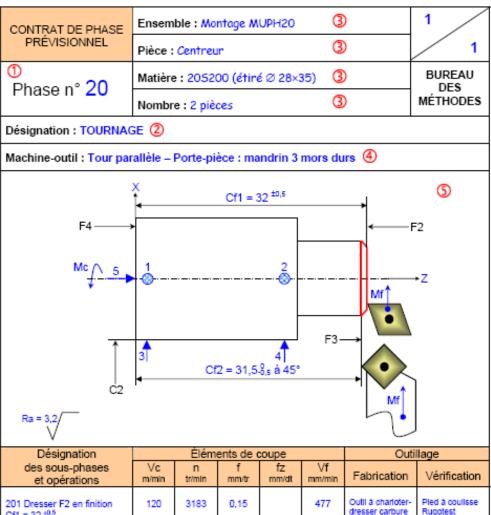
- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages : Soudage
- Traitements et revêtement superficiels



<u>Tournage – Outils de coupe :</u>

Carbures:

- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages Soudage
- Traitements et revêtement superficiels


<u>Tournage – Outils de coupe :</u>

Forme de plaquette :

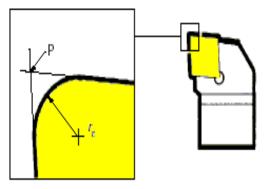
Facteurs affectant le choix	R ⊚	90	® []	$\overset{\circ\circ}{\Diamond}$	$\overset{\infty}{\triangle}$	⁵⁵	35 S	- }
Ébauche lourde	•	•	•	0	0			
Ébauche légère ; semi- finition		0	•	•	•	•		
Finition (complexité de forme)			0	0	•	•	•	
Contournage (accessibilité).			0	0	0	•	•	
Diversité d'opérations	0		•	0	0	•	0	
Puissance machine limitée			0	0	•	•	•	
Limitation de la tendance aux vibrations				0	•	•	•	
Matériau usiné dur	•	•						
Coupe intermittente	•	•	0	0	0			
Grand angle d'arête			•	•	•	•	•	
Petit angle d'arête		•		•	•			
● le mieux adapté ; ⊃ adapté.								

Désignation	Eléments de coupe					Outillage		
des sous-phases et opérations	Vc m/min	n tr/m/n	f mm/tr	fz mm/dt	Vf mm/min	Fabrication	Vérification	
201 Dresser F2 en finition Cf1 = 32 *0.5 Ra = 3,2	120	3183	0,15		477	Outil à charloter- dresser carbure (PCLN)	Pled à coullsse Rugotest	
202 Chanfreiner F3 en finition Cf2 = 31,5 ⁰ _{-0.6} à 45° Ra = 3,2	100	3183	manu.			Outil à charloter- dresser carbure (PSSN)	Projecteur de profil Rugotest	
6	7	7	7	7	7	8	8	

- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages Soudage
- Traitements et revêtement superficiels

<u>Tournage – Outils de coupe :</u>

Affûtage de l'outil :

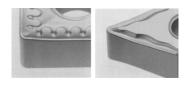

- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages : Soudage
- Traitements et revêtement superficiels

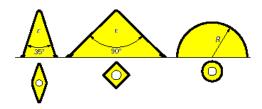
<u>Tournage – Outils de coupe :</u>

Rayon de bec:

Un rayon important:

- Résiste mieux à l'effort de coupe et aux élévations de température.
- Favorable pour la rugosité de la surface.




- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques
 d'assemblages
 Soudage
- Traitements et revêtement superficiels

<u>Tournage – Outils de coupe :</u>

Angle de pointe :

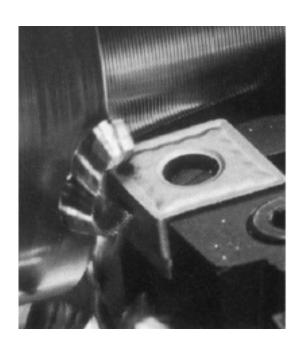
- Variable entre 35 et 90°.
- La pointe est la zone la plus sollicitée, mécaniquement et thermiquement.
- Les outils à pointe la plus élancée sont les plus fragiles.
- Les plaquettes rondes offrent une résistance très supérieure pour les usinages difficiles.
- Le choix de l'angle de pointe est conditionné par la géométrie de la surface à usiner.

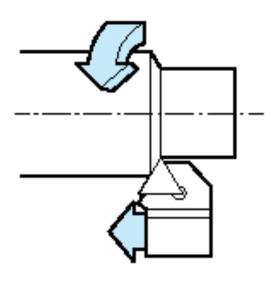
- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages Soudage
- Traitements et revêtement superficiels

<u>Tournage – Outils de coupe :</u>

Angle de pointe :

Facteurs affectant le choix	R ⊙	90 	<u></u>	$\overset{\circ}{\Diamond}$	$\overset{\circ}{\mathbb{A}}$	⁵⁵	35 🗞	₽
Ébauche lourde	•	•	•	0	0			
Ébauche légère ; semi- finition		0	•	•	•	•		
Finition (complexité de forme)			0	0	•	•	•	
Contournage (accessibilité).			0	0	0	•	•	
Diversité d'opérations	0		•	0	0	•	0	
Puissance machine limitée			0	0	•	•	•	
Limitation de la tendance aux vibrations				0	•	•	•	
Matériau usiné dur	•	•						
Coupe intermittente	•	•	0	0	0			
Grand angle d'arête			•	•	•	•	•	
Petit angle d'arête		•		•	•			
● le mieux adapté ; ⊃ adapté.								

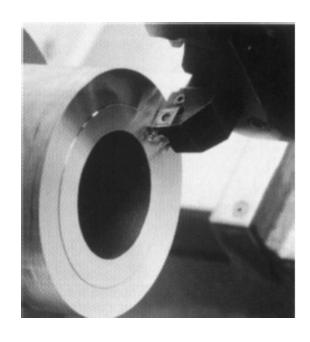


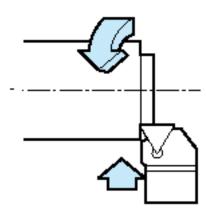


- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques
 d'assemblages :
 Soudage
- Traitements et revêtement superficiels

<u>Opérations de tournage – Chariotage :</u>

En chariotage, le mouvement d'avance (mouvement de l'outil) est une translation rectiligne parallèle à l'axe de révolution de la pièce, et cet usinage aura pour effet de réduire le diamètre de la pièce.

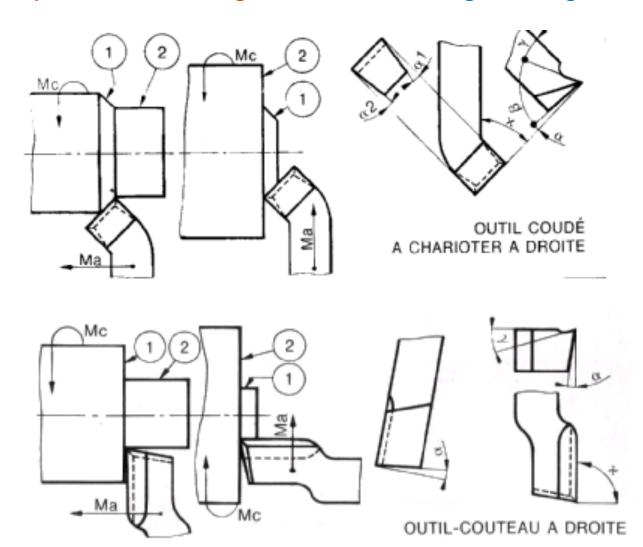




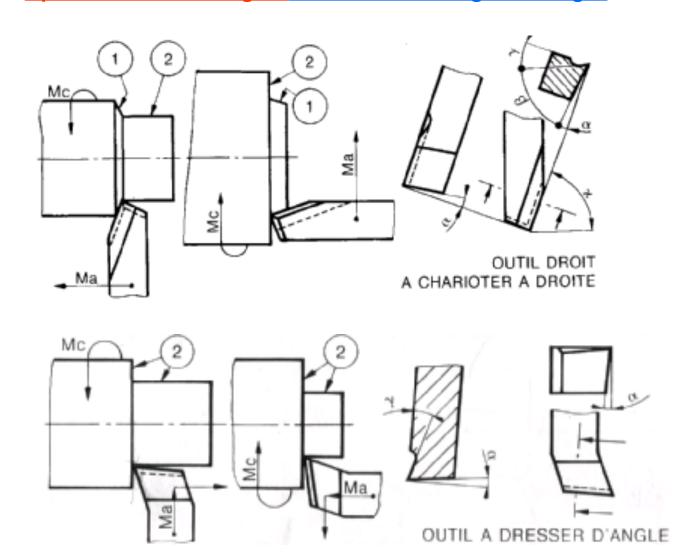
- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages : Soudage
- Traitements et revêtement superficiels

<u>Opérations de tournage – Dressage :</u>

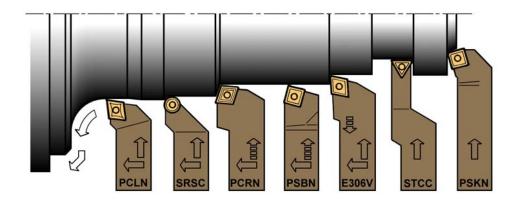
Le mouvement d'avance est une translation rectiligne de l'outil perpendiculaire à l'axe de la pièce, ce qui diminue la longueur de la pièce et génère un plan orthogonal à l'axe.

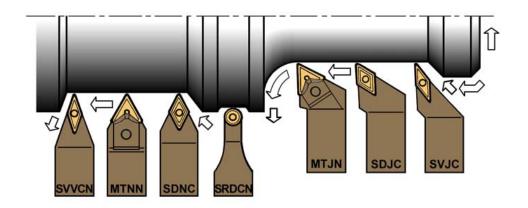


- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages : Soudage
- Traitements et revêtement superficiels

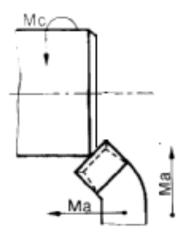

<u>Opérations de tournage – Outils de chariotage-dressage :</u>

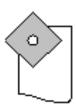
- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages : Soudage
- Traitements et revêtement superficiels

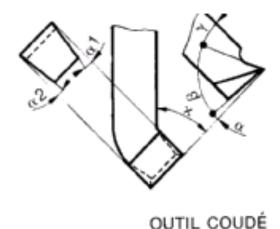

<u>Opérations de tournage – Outils de chariotage-dressage :</u>



- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages : Soudage
- Traitements et revêtement superficiels


<u>Opérations de tournage – Outils de chariotage-dressage :</u>

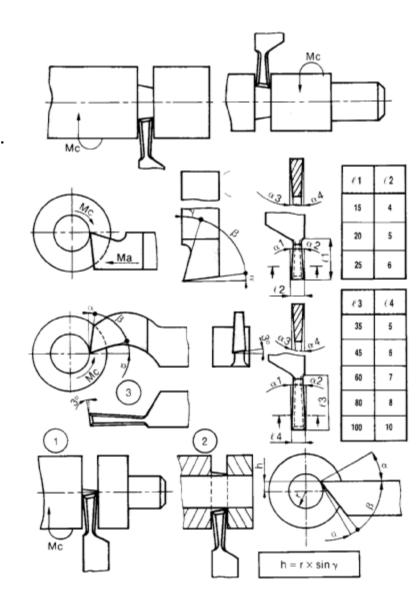



- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages Soudage
- Traitements et revêtement superficiels

<u>Opérations de tournage – Chanfreinage :</u>

Outil carbure à plaquette carrée

- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages Soudage
- Traitements et revêtement superficiels


Opérations de tournage - Tronçonnage :

<u>Outils</u>

- Outil à saigner droit.
- Outil à tronçonner à col de cygne.
- Porte-outil à lame.

Conditions de coupe

- $Vc = \frac{1}{2} Vc$ de chariotage.
- f : 0,05 à 0,4 mm/tr (manuelle)
- Lubrification abondante.

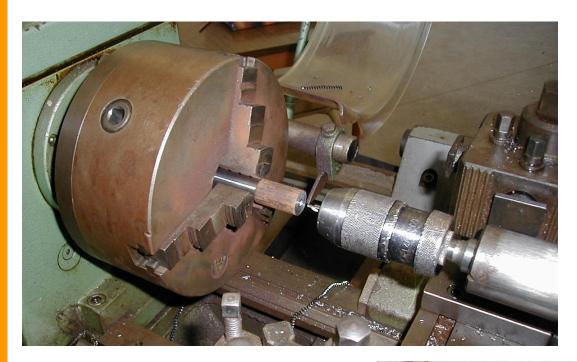
- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages : Soudage
- Traitements et revêtement superficiels

ENSEM Casablanca

<u>Opérations de tournage – Centrage :</u>

Il permet la mise en position et le maintien de la pièce, en montages mixte ou entre-pointes.

Il assure l'assise du foret en début de perçage.



- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages Soudage
- Traitements et revêtement superficiels

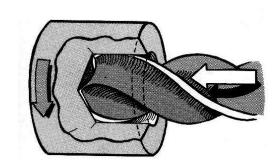
<u>Opérations de tournage – Centrage :</u>

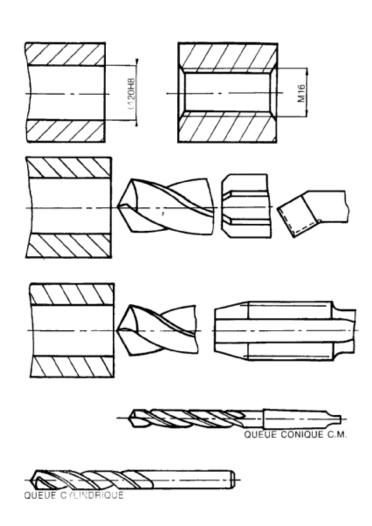
- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages Soudage
- Traitements et revêtement superficiels

<u>Opérations de tournage – Centrage :</u>

Méthode d'exécution:

- Vc = 2/3 Vc de chariotage.
- Pour la vitesse de rotation on prend :dm = (d+D)/2 diamètre moyen pour
- L'avance du foret est manuelle .
- Il faut prévoir un dégagement fréquent de l'outil.
- Lubrifier de préférence.




- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques
 d'assemblages :
 Soudage
- Traitements et revêtement superficiels

<u>Opérations de tournage – Perçage :</u>

Fonction:

- l'ébauche des alésages,
- l'exécution des diamètres de perçage avant taraudage.

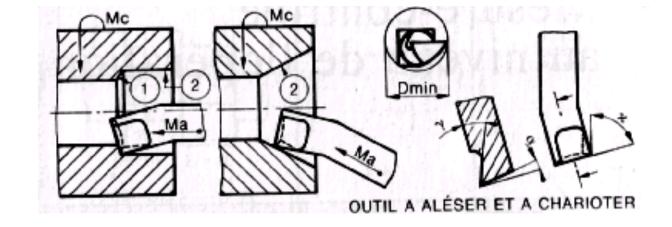
- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages : Soudage
- Traitements et revêtement superficiels

<u>Opérations de tournage – Perçage :</u>

Mode opératoire:.

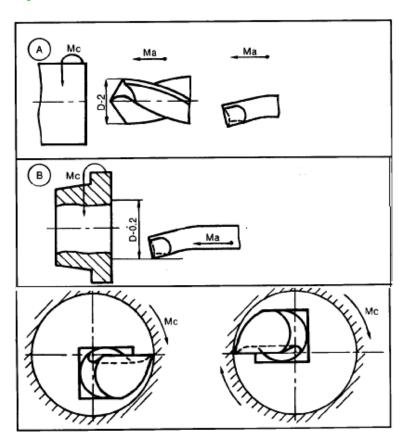
- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages : Soudage
- Traitements et revêtement superficiels

<u>Opérations de tournage – Perçage :</u>


Mode opératoire:.

- Vc = 2/3 Vc de chariotage.
- Avance manuelle.
- · Lubrification obligatoire.
- Dégager souvent l'outil pour assurer la lubrification, le refroidissement et le dégagement des copeaux.
- Commencer le perçage par un centrage.
- La profondeur du trou de perçage est contrôlée par le tambour de la poupée mobile.

- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages : Soudage
- Traitements et revêtement superficiels


- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages Soudage
- Traitements et revêtement superficiels

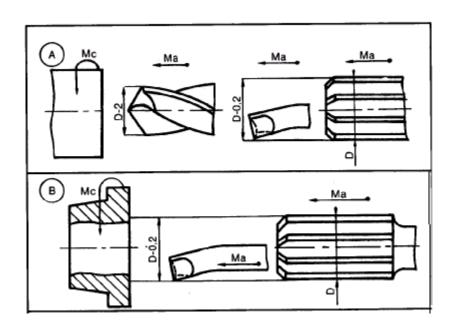
Opérations de tournage - Alésage :

Alésage à outil à tranchant unique

Mode opératoire

- Vc = 2/3 Vc de chariotage.
- f = 0.05 à 0.2 mm/tr.
- a = 0,05 à 2 mm.
- Ébaucher à d-0,5mm.
- Demi-finition à d-0,2mm
- Finir au diamètre d_{moy}
- Faire une ou plusieurs passes à vide.

- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques
 d'assemblages :
 Soudage
- Traitements et revêtement superficiels

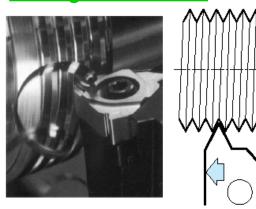

Opérations de tournage - Alésage :

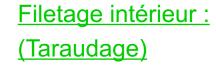
Alésage à outil à tranchants multiples:

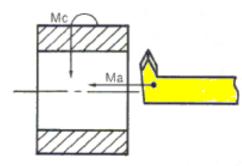
Mode opératoire

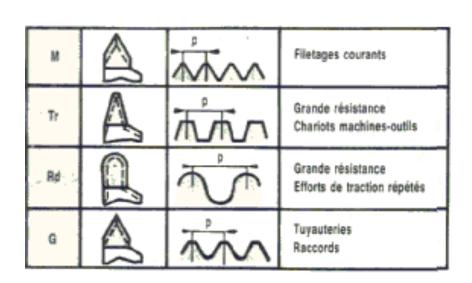
Vc = 1/4 Vc de chariotage.

f = 0.15 à 1 mm/tr.




- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques
 d'assemblages :
 Soudage
- Traitements et revêtement superficiels



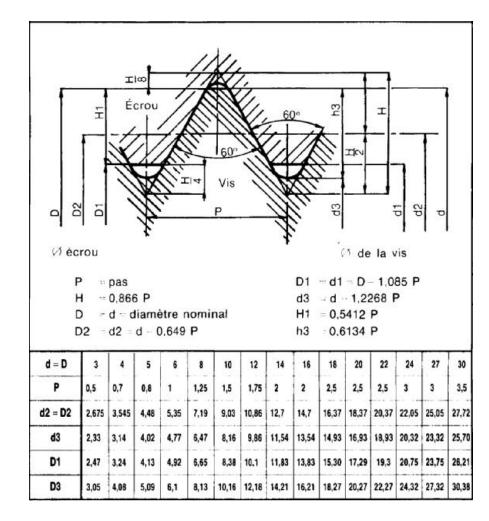

<u>Opérations de tournage – Filetage :</u>

Filetage extérieur :

- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages : Soudage
- Traitements et revêtement superficiels

<u>Opérations de tournage – Filetage :</u>

Outil carbure à fileter. Filetage isométrique.



- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages : Soudage
- Traitements et revêtement superficiels

Opérations de tournage - Filetage :

Filetage isométrique:

- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages : Soudage
- Traitements et revêtement superficiels

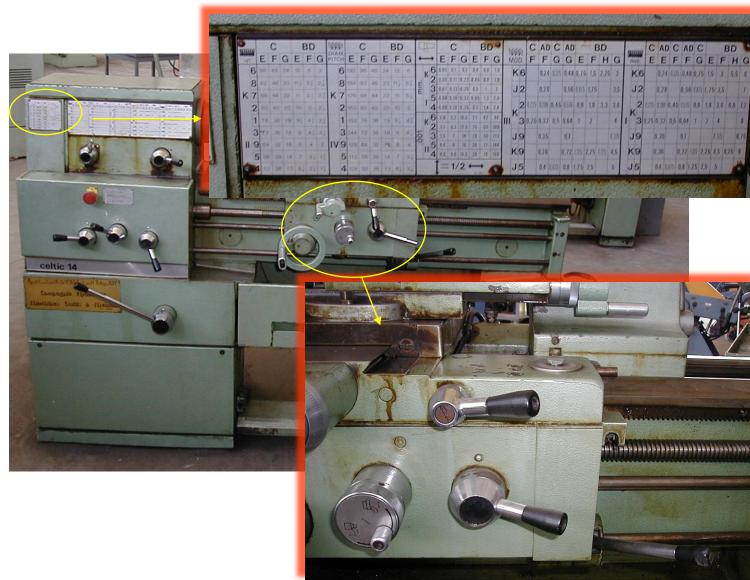
<u>Opérations de tournage – Filetage :</u>

Conditions de coupe :

- Vc = 1/3 Vc de chariotage
- Avance = le pas.
- Profondeur de passe : 0.2 mm

Montage de l'outil dans la tourelle :

La pointe de l'arête de coupe doit se situer exactement à hauteur d'axe de la machine


Vérifier que l'axe de l'outil soit rigoureusement perpendiculaire à l'axe de la machine.

- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages Soudage
- Traitements et revêtement superficiels

- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages Soudage
- Traitements et revêtement superficiels

<u>Opérations de tournage – Filetage :</u>

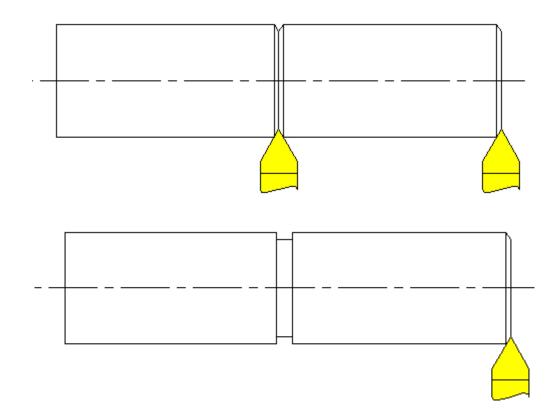

Mode opératoire:

Pas débrayable :

Le pas est égal ou sous multiple du pas de la vis-mère;

Pas de vis mère 6mm.

Dans le cas de **Pas non débrayable** vous ne devez en aucun cas débrayer l'avance de la machine avant d'être sûr que le filetage est terminé.


- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages : Soudage
- Traitements et revêtement superficiels

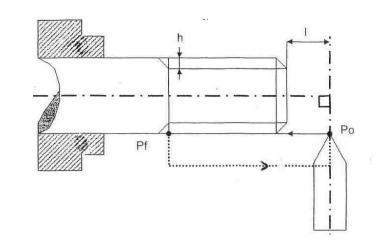
<u>Opérations de tournage – Filetage :</u>

Mode opératoire:

Exécuter le chanfrein d'entrée et éventuellement de sortie.

- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages Soudage
- Traitements et revêtement superficiels

ENSEM Casablanca


<u>Opérations de tournage – Filetage :</u>

Mode opératoire:

Mettre la machine en marche

Tangenter avec le chariot transversal et mettre le tambour gradué à zéro.

Dégager l'outil à droite au point Po.

A l'aide du chariot transversal prolonger l'outil de 0.2mm.

Embrayez l'avance en agissant sur le levier de la vis-mère.

Au point de fin de filet, dégagez l'outil et inversez le sens de rotation la machine.

Stoppez la à nouveau dès que la pointe de l'outil est de nouveau positionnée sur le point de départ Po.

Reprendre jusqu'un un profondeur de passe de (1.227xpas) sur le tambour gradué.

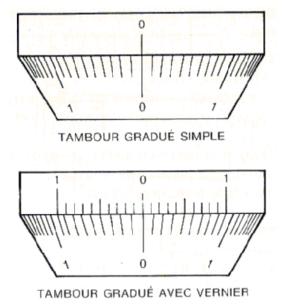
- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages : Soudage
- Traitements et revêtement superficiels

Tournage - Précision :

Dimensions nominales (mm)		Degrés de tolérances normalisés			
au dessus de	jusqu'à	IT7	IT8	IT9	IT10
-	3	0,01	0,014	0,025	0,04
3	6	0,012	0,018	0,030	0,048
6	10	0,015	0,022	0,036	0,058
10	18	0,018	0,027	0,043	0,070
18	30	0,021	0,033	0,052	0,084
30	50	0,025	0,039	0,062	0,1
50	80	0,030	0,046	0,074	0,12
80	120	0,035	0,054	0,087	0,14
120	180	0,040	0,063	0,01	0,16
180	250	0,046	0,072	0,115	0,185
250	315	0,052	0,081	0,130	0,210
315	400	0,057	0,089	0,140	0,230
400	500	0,63	0,097	0,155	0,250
Dimensions nominales jusqu'à 3150 mm (Voir NBN - EN 20286 -1)					

- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages : Soudage
- Traitements et revêtement superficiels

<u>Tournage – Etat de surface :</u>


Outil	Rugosité Ra en microns		
Acier rapide	1.6 à 3.2		
Carbure ou diamant	0.8 à 3.2		

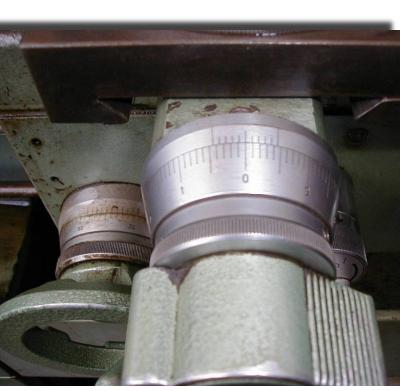
- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages : Soudage
- Traitements et revêtement superficiels

Tournage:

Contrôle de déplacement de l'outil - Tambour gradué :

- -Vernier au 1/10e
- 9 graduations du tambour correspondent à dix graduations du vernier.
- 1 graduation du vernier égale = 1/10e d'une graduation du





- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages Soudage
- Traitements et revêtement superficiels

Tournage:

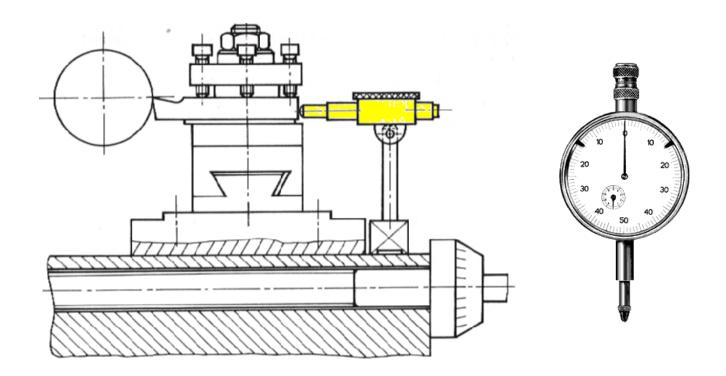
Contrôle de déplacement de l'outil - Tambour gradué :

- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages : Soudage
- Traitements et revêtement superficiels

Tournage:

Contrôle de déplacement de l'outil - Tambour gradué :

- Elaboration des métaux
- Fonderie
- Mise en forme par enlèvement de matière
- Mise en forme par déformation plastique
- Techniques d'assemblages Soudage
- Traitements et revêtement superficiels



Tournage:

Contrôle de déplacement de l'outil - Comparateur :

Mettre le comparateur monté sur un support magnétique en contact avec l'élément porte-outil.

Situer l'axe du palpeur dans l'axe du déplacement de la prise de passe.

