Exercices de différentiation

A. Ramadane, Ph.D.

À l'aide de la formule de différence centrée d'ordre 2:

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} + \mathcal{O}(h^2),$$

montrer que

$$f''(x) \simeq \frac{f(x+2h) - 2f(x) + f(x-2h)}{4h^2}.$$

<u>Réponse</u>

$$\begin{array}{l} f'(x) \simeq \frac{f(x+h)-f(x-h)}{2h}, \ f'(x+h) \simeq \frac{f(x+2h)-f(x)}{2h}, \ f'(x-h) \simeq \frac{f(x)-f(x-2h)}{2h}, \ f''(x) \simeq \frac{f'(x+h)-f'(x-h)}{2h} \ \text{d'où} \ f''(x) \simeq \frac{f(x+2h)-2f(x)+f(x-2h)}{4h^2}. \end{array}$$

Identifier l'erreur qui a été faite dans le raisonnement suivant et dans un deuxième temps, corriger l'erreur et refaire le raisonnement de façon correcte. Du développement de Taylor, nous avons:

$$\begin{cases} f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(x) + \frac{h^3}{6}f'''(\xi_1), & \text{pour} \quad \xi_1 \in (x, x+h); \\ f(x-h) = f(x) - hf'(x) + \frac{h^2}{2}f''(x) - \frac{h^3}{6}f'''(\xi_2), & \text{pour} \quad \xi_2 \in (x-h, x), \end{cases}$$

alors

$$\frac{1}{h^2}[f(x+h)-2f(x)+f(x-h)]=f^{\prime\prime}(x)+\frac{h}{6}[f^{\prime\prime\prime}(\xi_1)-f^{\prime\prime\prime}(\xi_2)]$$

et donc l'ordre de cette approximation de f'' est $\mathcal{O}(h)$.

<u>Réponse</u>

L'erreur commise est qu'on est limité à un développement de Taylor de degré 2 (ordre 3). Le bon raisonnement: $f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(x) + \frac{h^3}{6}f'''(x) + \frac{h^4}{24}f^{(4)}(x) + \mathcal{O}(h^5)$ et $f(x-h) = f(x) - hf'(x) + \frac{h^2}{2}f''(x) - \frac{h^3}{6}f'''(x) + \frac{h^4}{24}f^{(4)}(x) + \mathcal{O}(h^5)$. Alors $f''(x) = \frac{1}{h^2}[f(x+h) - 2f(x) + f(x-h)] - \frac{h^2}{12}f^{(4)}(x) + \mathcal{O}(h^3)$ et donc l'ordre de cette approximation de f''(x) est 2.

Soit f(x) une fonction telle que f(2) = 4, f(4) = 2, f(6) = 0 et f(8) = -5. Calculer deux approximations d'ordre 2 de f'(2).

<u>Réponse</u>

La différence avant d'ordre 2 avec h=2 donne $f'(2)\simeq \frac{-f(6)+4f(4)-3f(2)}{4}=-1$. La différence avant d'ordre 1 donne $f'(2)\simeq \frac{f(4)-f(2)}{2}=-1$ pour h=2; $f'(2)\simeq \frac{f(6)-f(2)}{4}=-1$ pour h=4 et $f'(2)\simeq \frac{f(8)-f(2)}{6}=-\frac{3}{2}$ pour h=6. Ensuite, on applique l'extrapolation de Richardson sur la différence avant d'odre 1 pour obtenir des approximations d'ordre 2. Ainsi sur les resultats obtenus avec h=2 et h=4, on obtient $f'(2)\simeq \frac{2\times(-1)-(-1)}{2-1}=-1$; et avec h=2 et h=6, on obtient $f'(2)\simeq \frac{3\times(-1)-(-\frac{3}{2})}{3-1}=-\frac{3}{4}$ qui sont des approximations d'ordre 2.

(a) À l'aide des développements de Taylor appropriés, donner l'expression des deux premiers termes de l'erreur liée à la formule:

$$\frac{f(x+ah)-f(x-bh)}{(a+b)h},$$

permettant de calculer une approximation de f'(x). Dans cette formule, a et b sont des constantes telles que $a + b \neq 0$.

(b) Déterminer l'ordre de cette approximation en fonction des valeurs de a et b.

<u>Réponse</u>

- (a) L'expression des deux premiers termes de l'erreur : $\frac{(a-b)h}{2}f''(x) + \frac{(a^2+b^2-ab)h^2}{6}f'''(x)$
- (b) Si $a \neq b$, l'approximation est d'ordre 1. Si a = b, l'approximation est d'ordre 2.

On considère la formule aux différences

$$App(h) = \frac{-f(x+3h) + 4f(x+2h) - 5f(x+h) + 2f(x)}{h^2} \simeq f''(x),$$

une approximation de f''(x).

(a) On dispose des valeurs suivantes de la fonction f(x):

X	f(x)
1,0	0,841 471
1,1	0,891 207
1,2	0,932 039
1,3	0,963 558
1,4	0,985 450
1,5	0,997495
1,6	0,999574

En vous servant de la formule aux différences App(h), calculer deux approximations de f''(1,0) pour h=0,1 et pour h=0,2. Sachant que la valeur exacte de $f''(1,0)=-0,841\,471$, estimer numériquement *l'ordre de précision* de cette formule aux différences.

(b) En vous servant des développements de Taylor appropriés, montrer que

$$App(h) = f''(x) - \frac{11}{12}h^2f^{(4)}(x) + \mathcal{O}(h^3),$$

et en déduire *l'ordre de précision* de l'approximation App(h).

(a) La formule aux différences donne $f''(1) \simeq -0.8495$ pour h = 0.1 et $f''(1) \simeq -0.875675$ pour h = 0.2. Les erreurs absolues sont respectivement E(h = 0.1) = 0.008029 et E(h = 0.2) = 0.034204. Le ratio des erreurs absolues est $\frac{E(h=0.2)}{E(h=0.1)} = 4.26 \simeq 2^2$. La formule est d'ordre 2.

(b)

$$-f(x+3h) = -f(x) - 3hf'(x) - \frac{9h^2}{2}f''(x) - \frac{27h^3}{3!}f'''(x) - \frac{81h^3}{4!}f^{(4)}(x) + \mathcal{O}(h^5)$$

$$4f(x+2h) = 4f(x) + 8hf'(x) + \frac{16h^2}{2}f''(x) + \frac{32h^3}{3!}f'''(x) + \frac{64h^3}{4!}f^{(4)}(x) + \mathcal{O}(h^5)$$

$$-5f(x+h) = -5f(x) - 5hf'(x) - \frac{5h^2}{2}f''(x) - \frac{5h^3}{3!}f'''(x) + \frac{5h^3}{4!}f^{(4)}(x) + \mathcal{O}(h^5)$$

$$2f(x) = 2f(x)$$

$$h^2app(h) = h^2f''(x) - \frac{11h^4}{12}f^{(4)}(x) + \mathcal{O}(h^5)$$

$$app(h) = f''(x) - \frac{11h^2}{12}f^{(4)}(x) + \mathcal{O}(h^3)$$

$$f''(x) = app(h) + \frac{11h^2}{12}f^{(4)}(x) + \mathcal{O}(h^3) \Rightarrow f''(x) = app(h) + \mathcal{O}(h^2)$$

$$\Rightarrow \text{approximation d'ordre 2}.$$

On considère le θ -schéma

$$f'(x) \simeq (1-\theta) \left(\frac{f(x+h) - f(x)}{h} \right) + \theta \left(\frac{f(x) - f(x-h)}{h} \right) = App_{\theta}(h)$$

obtenu à partir d'une combinaison linéaire des formules de différences avant et arrière d'ordre 1. À l'aide de développements de Taylor de degré appropriés, montrer que les 2 premiers termes de l'erreur associée au θ -schéma $(App_{\theta}(h))$ sont donnés par:

$$\frac{(2\theta - 1)h}{2}f''(x) - \frac{h^2}{6}f'''(x),$$

et en déduire l'ordre de précision du θ -schéma en fonction du paramètre θ .

$$f(x+h) = f(x) + f'(x)h + \frac{f''(x)h^2}{2} + \frac{f'''(x)h^3}{3!} + \dots,$$

$$f(x-h) = f(x) - f'(x)h + \frac{f''(x)h^2}{2} - \frac{f'''(x)h^3}{3!} + \dots$$
D'où

$$\begin{aligned} App_{\theta}(h) &= (1-\theta) \Big[f'(x) + \frac{f''(x)h}{2} + \frac{f'''(x)h^2}{3!} + \dots \Big] + \theta \Big[f''(x) - \frac{f''(x)h}{2} + \frac{f'''(x)h^2}{3!} - \dots \Big] \\ &= f'(x) + (1-2\theta) \frac{f''(x)h}{2} + \frac{f'''(x)h^2}{3!} + \dots \end{aligned}$$

D'où
$$f'(x) = (1 - \theta) \left(\frac{f(x+h) - f(x)}{h} \right) + \theta \left(\frac{f(x) - f(x-h)}{h} \right) + (2\theta - 1) \frac{f''(x)h}{2} - \frac{f'''(x)h^2}{6} + \dots$$