

Université Internationale de Casablanca

LAUREATE INTERNATIONAL UNIVERSITIES

Méthode du maximum de Vraisemblance

Pr. BOUAMAINE A.

I. Méthode du maximum de Vraisemblance

Soit X une variable aléatoire dont $f(x, \theta)$ est la probabilité de la valeur x dans le cas discret et la densité de probabilité dans le cas absolument continu.

Objectif

On souhaite donner une méthode qui permette de déterminer l'estimateur d'un paramètre d'une loi de probabilité.

Principe

On fait une seule expérience aléatoire, soit x₁ une réalisation de X contenue dans un intervalle petit I qui dépend de θ

Principe

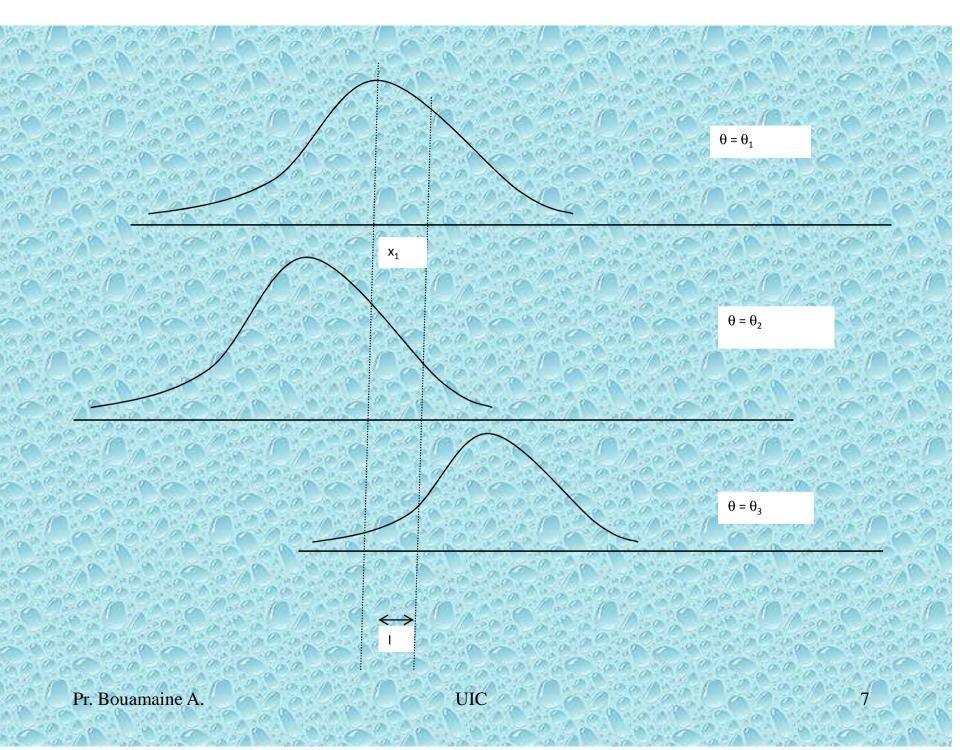
$$P[X \in I] = \begin{cases} f(x_1, \theta) & \text{si } X \text{ est v.a.r. discrète} \\ f(x_1, \theta) dx & \text{si } X \text{ est continue} \end{cases}$$

Problème

On n'hésite entre plusieurs valeurs de θ :

Quelle peut être la valeur la plus probable en

rapport avec x₁?



Remarque

Il est naturel de choisir la valeur de θ qui donne une réalisation de l'événement

[$X \in I$] avec une plus grande probabilité.

Conclusion

On est donc conduit à prendre pour estimation de θ la valeur qui rend maximum la fonction $f(x, \theta)$..

Cas général

On fait n expériences aléatoires indépendantes

$$\vec{x} = (x_1, x_2, \dots, x_n)$$

réalisation d'un vecteur aléatoire (X_1, X_2, \dots, X_n) échantillon aléatoire i.i.d de X

Cas discret

 $\prod_{i=1}^{n} f(x_i, \theta)$: la probabilité d'un élément de volume dy contenant $\vec{x} = (x_1, x_2, \dots, x_n)$

Cas continu

$$\prod_{i=1}^{n} f(x_i, \theta) dv$$
: la probabilité d'un élément de

volume dv contenant $\vec{x} = (x_1, x_2, \dots, x_n)$

Fonction de vraisemblance

$$\theta \to L(\vec{x}, \theta) = \prod_{i=1}^n f(x_i, \theta)$$

Principe de la méthode

Prendre pour estimation de θ , le nombre qui rend maximum $\theta \to L(x, \theta)$

Méthode

Prendre pour estimation de θ , le nombre qui rend maximum:

$$\theta \to Log(L(x,\theta)) = \sum_{i=1}^{n} Log(f(xi,\theta))$$

II. Etude des estimateurs non biaisés

Objectif

Déterminer un minorant de la variance d'un estimateur non biaisé

Soit $T = \rho(X)$ estimateur non biaisé de θ . On a :

$$\int_{IR^{n}} L(\vec{x}, \theta) \, d\vec{x} = 1 \qquad \int_{IR^{n}} \rho(\vec{x}) \, L(\vec{x}, \theta) \, d\vec{x} = \theta$$

Quantité d'information de Fisher

$$I_{n} = E \left[\left(\frac{\delta}{\delta \theta} Log \left(L \left(\vec{X}, \theta \right) \right) \right)^{2} \right]$$

Quantité d'information de Fisher

$$I_{n} = Var \left[\left(\frac{\delta}{\delta \theta} Log \left(L(\vec{X}, \theta) \right) \right) \right]$$

Conditions de Cramer & Rao

H1: $\Delta = \{x, f(x, \theta) > 0\}$ ne dépend pas de θ

H2: $\frac{\delta}{\delta\theta}(f(x, \theta))$ existe

Conditions de Cramer & Rao

H3: La statistique $T = \rho(\vec{X})$ a une variance finie

H 4 : $\frac{\partial}{\partial \theta}(\text{Log}(L(\vec{x},\theta)))$, $\frac{\partial}{\partial \theta}(\text{Log}(L(\vec{x},\theta)))\rho(\vec{x})$ sont intégrables par rapport à la mesure de densité $L(\vec{x},\theta)$ dans IR^n ainsi que leurs carrés.

Théorème de Cramer & Rao

$$Var(T) \geq \frac{1}{I_n}$$

$$Var(T) = \frac{1}{I_n} \longleftrightarrow \exists \lambda(\theta) : \frac{\delta}{\delta \theta} Log(L(\vec{x}, \theta)) = \lambda(\theta) (\rho(\vec{x}) - \theta)$$

Estimateur efficace

Un estimateur T est efficace ssi $Var(T) = \frac{1}{I_n}$

Propriété

Il n'existe un estimateur efficace que si on a :

$$\exists \lambda(\theta): \quad \frac{\delta}{\delta \theta} Log(L(\vec{x}, \theta)) = \lambda(\theta) (\rho(\vec{x}) - \theta)$$

Propriété

Un estimateur efficace est convergent

Quantité d'information de Fisher

$$I_n = -E \left[\frac{\delta^2}{\delta \theta^2} Log(L(\vec{x}, \theta)) \right]$$

Quantité d'information de Fisher

$$I_{1} = -E \left[\frac{\delta^{2}}{\delta \theta^{2}} Log(f(X, \theta)) \right]$$

Propriété

$$I_n = n I_1$$