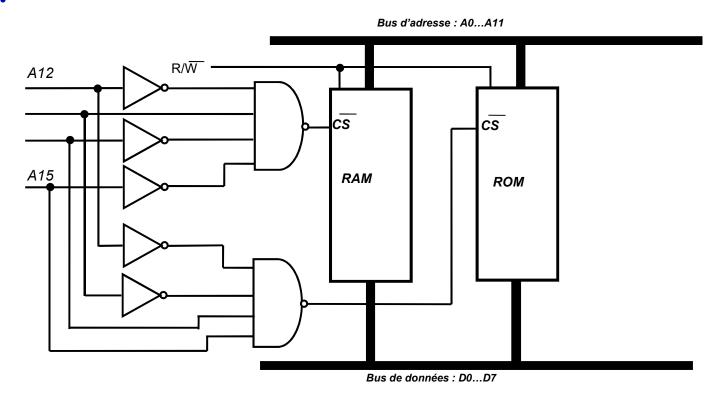

Exercices d'application:

Exercice 1:

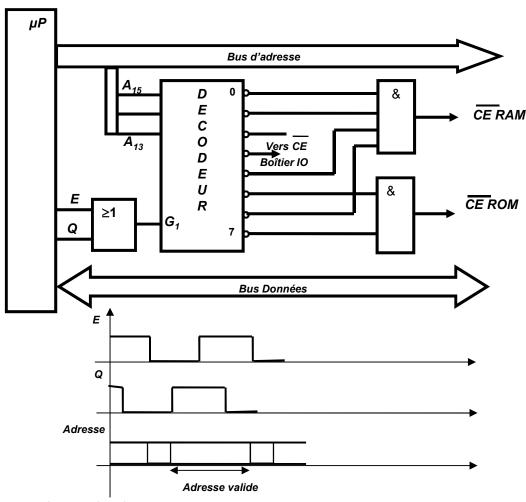
A quelle condition la mémoire est-elle accessible ?



La mémoire est accessible si /CE est au niveau bas:

$$\overline{A_{15}}.\overline{A_{14}}.A_{13}.A_{12} = 1$$

Exercices d'application:


Exercice 2:

- 1. Quelle est la condition de sélection des mémoires RAM et ROM de ce circuit ?
- 2. Quelles sont les plages d'adresse de chacune des mémoires ?

Exercices d'application:

Exercice 3:

- 1. Préciser les différents espaces mémoires ainsi réservés.
- 2. Quel est l'intérêt du circuit OU connecté à l'entrée G1 du décodeur ?

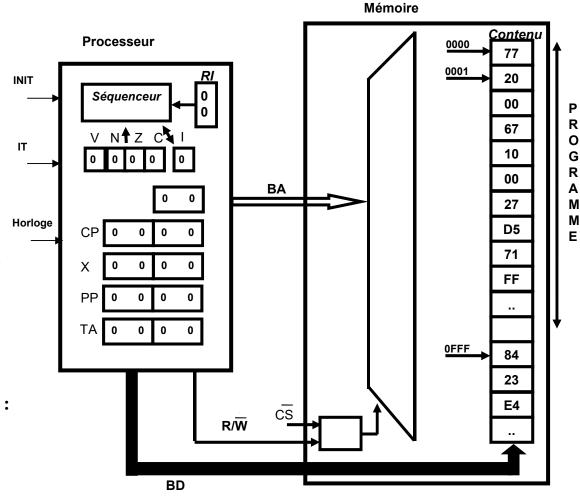
Unité d'adressage composée de 4 registres de 16 bits :

- Un compteur de programme CP
- Un pointeur de pile PP
- Un registre index X
- Un registre tampon d'adresse TA

Unité de traitement comprenant ALU et 2 registres 8 bits :

- Un registre de travail appelé accumulateur A
- Un registre d'état SR, mis à jour lors d'une opération sur l'ALU, comporte les 4 indicateurs suivants :

N: signe


Z: Résultat nul

V: Overflow

C: Retenue

I : Masque d'interruption, mis à jour par les instructions EI (mise

à 0) et DI (mise à 1), est.

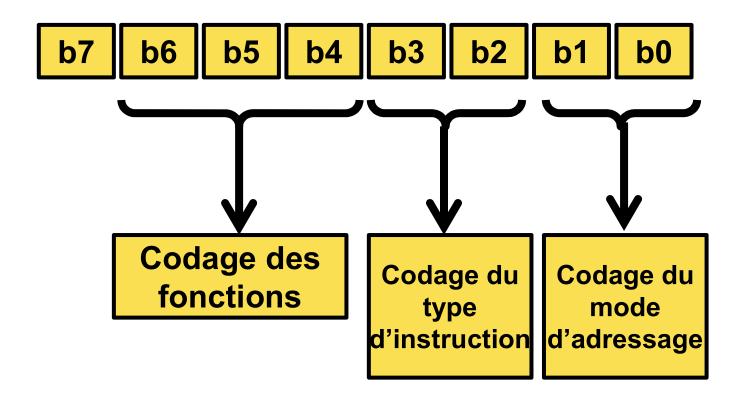
Mode d'adressage	Nombre d'octets	Forme de l'instruction
Absolu	3	Code opération + adresse
Indexé	2	Code opération + déplacement sur 1 octet
Implicite	1	Code opération
Immédiat	2 ou 3	Code opération suivi d'un opérande (1 octet) ou une adresse (2 octets)

M[i] = mot mémoire d'adresse i, M.A= mode d'adressage, ()=contenu de, T= traitement) :

Traitement sur une seule variable:

 \circ A \leftarrow T(A) M.A implicite

 \circ M[i] \leftarrow T(M[i]) M.A absolu et indexé


Traitement sur une variable ou une constante :

○ A ← (A) T Cste M.A immédiat

Traitement sur 2 variables:

 \circ A \leftarrow (A) T(M[i]) M.A absolu et indexé

Si b7, b6, b5, b4, b3, b1, b0 représentent les huit bits du premier octet d'une instruction:

Si b7, b6, b5, b4, b3, b1, b0 représentent les huit bits du premier octet d'une instruction:

b_3b_2	Codage du type d'instruction
0 0	Traitement
0 1	Transfert
1 0	Branchement
1 1	Divers

b_1b_0	Codage du mode d'adressage
0 0	Absolu
0 1	Indexé
1 0	Implicite
1 1	Immédiat

$b_6b_5b_4$	Codage des fonctions
$b_6b_5b_4$	Cas des traitements
0 0 0	Comparaison
0 0 1	Et
0 1 0	Ou
0 1 1	Addition avec retenue
1 0 0	Soustraction
1 0 1	Incrémentation
1 1 0	Décrémentation
1 1 1	Addition sans retenue

$b_6b_5b_4$	Cas des transferts
0 0 0	Entrée
0 0 1	Sortie
0 1 0	Chargement
0 1 1	Stockage
1 0 0	Push
1 0 1	Pull
1 1 0	Chargement de X
1 1 1	Chargement de PP

Remarque : les chargements des registres X et PP nécessitent, en adressage immédiat, la fourniture de deux octets (adresse)

$b_6b_5b_4$	Cas des branchements
0 0 0	Inconditionnel
0 0 1	Appel à sous programme
0 1 0	Branchement si Z=1
0 1 1	Branchement si Z=0
1 0 0	Branchement si C=1

$b_6b_5b_4$	Cas des divers
0 0 0	EI
0 0 1	DI
0 1 0	RTS
0 1 1	RTi
1 0 0	NOP