
ANDROID
COURSE

By: Mr Adnane Ayman

Chapter I

• Android
Basics

Chapter II

• User
Interface

Chapter III

• Advanced &
Useful Concepts
(Practical Work)

4 hours 12 hours2 hours

Final Exam 2 hours

Project
Presentation

2 hours

Facts

Chapter I: Android Basics

1. Overview [What is android ? / why android? /features]
2. Environment Setup (IDEs):
3. Architecture
4. Application Components
5. Running my first application
6. Resources
7. Activities
8. Intents

4 hours

Chapter II: User Interface

1. UI layouts
2. UI Controls
3. Event handlings

2 hours

Chapter III: Advanced &
Useful Concepts: Practical Work

1. Alert Dialogs
2. Auto Complete
3. Sending SMS
4. Sending Emails
5. Google maps (TP markers)
6. Progress Bars
7. Shared Preferences
8. SQLite / ORMs (Sugar)
9. Text to speech
10.Firebase(FirebaseAuthenticationManager + FirebaseData

baseManager

12 hours

{

INTRODUCTION
TO ANDROID
AND ANDROID
STUDIO

Mr Adnane Ayman

Android Basics:

 Overview [What is android ? / why android? /features]
 Environment Setup (IDEs):
 Architecture
 Application Components
 Running my first application
 Resources
 Activities
 Intents

What Will We Learn Today

Android is the world’s most popular and dominant
mobile operating system. It’s based on Linux and is
open-source. It runs on a wide variety of hardware,
including smartphones, smart watches, cars, televisions,
digital cameras, game consoles and more. It was founded
by Andy Rubin and three others in October 2003 and got
acquired by Google in August 2005.

What is android ?

Distribution
dashboard

2011

2018

Worlwide Market Share

With Over 2.5 Billion monthly active users

Why Android?

Android

Open Source

Larger Developer
and community

reach

Rich
development
Environment

Free SDK ,IDE
and emulator

Distribute your
app anywhere

(Playstore,
Amazon,Appstor

e …)

Features
Feature & Description

Beautiful UI
Android OS basic screen provides a
beautiful and intuitive user interface.

Connectivity
GSM/EDGE, IDEN, CDMA, EV-DO, UMTS,
Bluetooth, Wi-Fi, LTE, NFC and WiMAX.

Storage
SQLite, a lightweight relational database, is
used for data storage purposes.

Media support
MP3, MIDI, Ogg Vorbis, WAV, JPEG, PNG,
GIF, SVG …

Messaging
SMS and MMS

Web browser
Based on the open-source WebKit layout
engine, coupled with Chrome's V8
JavaScript engine supporting HTML5 and
CSS3.

Feature & Description

Multi-touch
Android has native support for multi-
touch which was initially made available in
handsets.

Multi-tasking
User can jump from one task to another
and same time various application can run
simultaneously.

GCM
Google Cloud Messaging (GCM) is a
service that lets developers send short
message data to their users on Android
devices, without needing a proprietary
sync solution.

Android Beam
A popular NFC-based technology that lets
users instantly share, just by touching two
NFC-enabled phones together.

Android Plateform Overview

Android Plateform Overview

Android is actually a system of the Linux family, for once
without the GNU tools. The OS is based on:

 A Linux kernel (and its drivers)

 a virtual machine: Dalvik Virtual Machine

 applications (browser, contact management, telephony
application ...)

[Dalvik] is the name of the open-source virtual machine used on
Android systems. This virtual machine is running .dex files and
is not compatible with a JVM of the type Java SE or even Java
ME

What Do I Need To Build An
Android App?

• Java Programming Language & XML
• Android SDK & SDK Tools
• Android Studio
• The desire to learn

Environment Setup (IDEs):
You can start the development of your Android application on
one of the following operating systems:

• Microsoft Windows XP or later.

• Mac OS X 10.5.8 or later with Intel chip.

• Linux, including GNU C Library 2.7 or later.

Second, all the tools needed to develop Android apps are
available for free and can be downloaded from the web. Below is
a list of the software you will need before you start programming
your Android application.

• Java JDK5 or later

• Android Studio

Environment Setup (IDEs):

You can download the latest version of Java JDK from Oracle's
Java site
− Java SE Downloads. You will find instructions for installing
JDK in downloaded files, follow the given instructions to install
and configure the setup. Finally set PATH and JAVA_HOME
environment variables to refer to the directory that
contains java and javac, typically java_install_dir/bin and
java_install_dir respectively.

Android IDEs
There are so many sophisticated Technologies are available to
develop android applications, the familiar technologies, which
are predominantly using tools as follows
• Android Studio
• Eclipse IDE(Deprecated)

http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.tutorialspoint.com/android/android_studio.htm

Architecture
• Java: Java class files containing app logic
• Res: Different resource files
• Anim: Animation resource files
• Drawable: Images
• Drawable-Xdpi: Images depending on
screen density
• Layout: App layout files
• Menu: Layout menu files
• Values: Value files (strings, colors,
arrays, etc)
• Values-vX: Value files depending on API
level
• Values-Xdp: Value files depending on
screen density
• XML: XML files
• AndroidManifest.xml: App metadata file
• build.gradle: Build related settings

Application Components

Application components are the essential building
blocks of an Android application. These components
are loosely coupled by the application manifest
file AndroidManifest.xml that describes each
component of the application and how they interact.
There are following four main components that can be
used within an Android application :

Activities

 They dictate the UI and handle the
user interaction to the smart phone
screen

 Every app has at least one activity

 Activities can be full-screen, floating
or embedded inside another activity

Services

 A service is a long running
operation in the background

 There are two types of services
in Android – Bounded (which
runs as long as components
which bind to it run) and
Unbounded (which runs
indefinitely)

 Services run on the main
thread of the application by
default

BroadcastReceiver

 A broadcast is a system or app
event that can be “broadcasted”
so other apps/services can listen
for it

 Broadcasts are handled by a
BroadcastReceiver, which is a
component that allows you to
listen for broadcasts

 A BroadcastReceiver can be
implemented in
AndroidManifest.xml, or
dynamically by calling
registerReceiver(), or both

Content Providers/Resolvers
 A content provider allows you to

store data in your app in a
structured way, similar to a
relational database like SQL, for
the purpose of providing it to
other apps. Example usage:
Contacts app, SMS app, etc

 A content resolver allows you to
get data from a content provider
or manipulate its data (modify,
delete, update, etc)

 You cannot request to read data
from a content provider at
runtime, it has to be declared in
AndroidManifest.xml

App
Database

Update

Delete

Fetch

Insert

Additional Components
Intents

• An intent is an abstract description of
an operation to be performed. Think
of it as an “intention” to do
something

• Intents can be used to start activities,
services or send a broadcast

• Intents are of two types – Explicit
(when you know what exactly you
want to do), and Implicit (when
you’re not sure what you want to do)

AndroidManifest.XML

• Is the file which describes the
fundamental characteristics
of the app and defines each
of its components.

Layouts
• A layout defines the visual structure for a user

interface, such as the UI for an activity or app widget
• Layouts can be defined both in XML or

programmatically using View and ViewGroup objects
• There are 5 different types of Layouts in Android:

LinearLayout, RelativeLayout, FrameLayout,
TableLayout and AbsoluteLayout

Life cycle of Android application

Workflow

Running my first application

The first step is to
create a simple
Android Application
using Android studio.
When you click on
Android studio icon, it
will show screen as
shown here:

Running my first application

The next level of
installation should
contain selecting the
activity to mobile, it
specifies the default
layout for Applications.

Running my first application

A new installation frame
should ask Application
name, package
information and location
of the project. You need
to specify Minimum
SDK, and declare as
API:17 Android 4.2(Jelly
Bean)

At the final stage it going to be open development tool to write the application code.

Anatomy of Android Application
1. Java => Contains the .java source

files for your project.

2. res/drawable => A directory for
drawable objects

3. res/layout => A directory for files
that define your app's UI

4. res/values => A directory for other
various XML files that contain a
collection of strings and colours
definitions…

5. AndroidManifest.xml

6. Build.gradle => contains
compileSdkVersion,
buildToolsVersion, applicationId,
minSdkVersion, targetSdkVersion,
versionCode and versionName

The Main Activity File
The main activity code is a Java file MainActivity.java. This is the actual application file
which ultimately gets converted to a Dalvik executable and runs your application.
Following is the default code generated by the application wizard for
Hello World! application

Here, R.layout.activity_main refers to the activity_main.xml file located in
the res/layout folder. The onCreate() method is one of many methods that are figured
when an activity is loaded.

The Manifest File
Following is the list of tags which you will use in your manifest file to specify different
Android application components :
<activity>elements for activities; <service> elements for services ;<receiver> elements for
broadcast receivers ;<provider> elements for content providers

The Strings File

The strings.xml file is located in the res/values folder and it
contains all the text that your application uses. For example,
the names of buttons, labels, default text, and similar types of
strings go into this file.

The Layout File
The activity_main.xml is a layout file available in res/layout directory, that is referenced
by your application when building its interface

Running the application

Congratulations!!! you have
developed your first Android
Application

Friendly
reminder

Accessing Resources in Code
When your Android application is compiled, a R class gets generated, which contains
resource IDs for all the resources available in your res/ directory. You can use R class to
access that resource using sub-directory and resource name or directly resource ID

Example 1 :
To access res/drawable/myimage.png and set an ImageView you will use following code:

ImageView imageView = (ImageView) findViewById(R.id.myimageview);
imageView.setImageResource(R.drawable.myimage);

Example 2:
Consider next example where res/values/strings.xml has following definition

Now you can set the text on a TextView object with ID msg using a resource ID as
follows :
TextView msgTextView = (TextView) findViewById(R.id.msg);
msgTextView.setText(R.string.hello);

Accessing Resources in Code

Example 3 :
Consider the following resource XML res/values/strings.xml file that includes a color
resource and a string resource:

Now you can use these resources in the following layout file to set the text color and
text string as follows :

The Application
life cycle

Click here

Layouts

 When the content for your layout is dynamic or not pre-determined, you
can use a layout that subclasses AdapterView to populate the layout
with views at runtime.

Layouts

 Input controls are the interactive components in your app's
user interface. Android provides a wide variety of controls
you can use in your UI, such as buttons, text fields, seek bars,
check box, zoom buttons, toggle buttons, and many more.

UI Controls

 Input controls are the interactive components in your app's user interface.
Android provides a wide variety of controls you can use in your UI, such as
buttons, text fields, seek bars, check box, zoom buttons, toggle buttons, and
many more.

UI Controls

Example 1: Button with id = myButton

 Step 1:

Public class MainActivity extends AppCompatActivity implements
View.OnClickListener

 Step 2:

Private Button button;

(inside on create)=>

button = (Button) findViewById(R.id.myButton);

button.setOnClickListener(this);

UI Controls

Example 1: Button with id = myButton

 Step 3:

@override

Public void onClick(View view) {

if(view == myButton){

//traitement+ toast

Toast.makeText(getApplicationContext(),“click!!",Toast.LENGTH_SHORT
).show();

}

}

UI Controls
Example 2: Button style

https://angrytools.com/android/button/

 Step 1: paste the xml generated code in layout.xml

 Step 2: paste the buttonShape.xml generated code in the drawable
folder

Example 3 : changing case of textview

TP ; help (getText,setText , toLowerCase, toUpperCase)

https://angrytools.com/android/button/

UI Controls

Example 4 : Basic calculator

num1 num2OP

+

-

x

/

Result
: XX

Intents
An Android Intent is an abstract description of an operation to be performed.

Example 1 :
// Explicit Intent by specifying its class name
Intent i = new Intent(FirstActivity.this, SecondActivity.class);
// Starts TargetActivity
startActivity(i);

These intents (explicit) designate the
target component by its name and they
are typically used for application-
internal messages - such as an activity
starting a subordinate service or
launching a sister activity.

Intents

Example 1 : Implicit Intent
String q = “Tesla";
Intent intent = new Intent(Intent.ACTION_WEB_SEARCH);
intent.putExtra(SearchManager.QUERY, q);
startActivity(intent);

Login Page

Example 4 :

Main Screen

Login

Connect

Login

Connect

Case user
unknown

Case user
known

New
Activity

+
greetings

Notifications

Android Toast class provides a handy way to show users alerts but problem
is that these alerts are not persistent which means alert flashes on the screen
for a few seconds and then disappears.

Example :
 Step 1: Create Notification Builder
NotificationCompat.BuildermBuilder=new NotificationCompat.Builder(this);

 Step 2: Once you have Builder object, you can set its Notification properties
using Builder object as per your requirement. But this is mandatory to set at
least following −
 A small icon, set by setSmallIcon()
 A title, set by setContentTitle()
 Detail text, set by setContentText()

=>
mBuilder.setSmallIcon(R.drawable.notification_icon);
mBuilder.setContentTitle("Notification Alert, Click Me!");
mBuilder.setContentText("Hi, This is Android Notification Detail!");

Notifications

Example :

 Step 3: Attach Actions

 This is an optional part and required if you want to attach an action with
the notification. An action allows users to go directly from the
notification to an Activity in your application

Intent resultIntent = new Intent(this, MainActivity.class);

TaskStackBuilder stackBuilder = TaskStackBuilder.create(this);

stackBuilder.addParentStack(MainActivity.class);

// Adds the Intent that starts the Activity to the top of the stack

stackBuilder.addNextIntent(resultIntent);

PendingIntent resultPendingIntent =
stackBuilder.getPendingIntent(0,PendingIntent.FLAG_UPDATE_CURREN
T); mBuilder.setContentIntent(resultPendingIntent);

Example :

 Step 4: Issue the notification
 Finally, you pass the Notification object to the

system by calling NotificationManager.notify() to
send your notification.

NotificationManager mNotificationManager =
(NotificationManager)
getSystemService(Context.NOTIFICATION_SERVICE
);

// notificationID allows you to update the notification
later on.

mNotificationManager.notify(notificationID,
mBuilder.build());

Notifications

Sugar ORM (SQLite)

Step 1: Download via Gradle :

 implementation 'com.github.satyan:sugar:1.5‘

Step 2: Manifest File inside Application :

 android:name="com.orm.SugarApp“

 outside <Application>

<meta-data android:name="DATABASE" android:value=“Vehicles.db" />
<meta-data android:name="VERSION" android:value="2" />
<meta-data android:name="QUERY_LOG" android:value="true" />
<meta-data android:name="DOMAIN_PACKAGE_NAME"
android:value="com.example.myapplication.vehiclesModel" />

Sugar ORM (SQLite)

Step 3: Create the Model :

Step 4: Create the Layout / Activity:

Sending a Mail

Example .
// You will use ACTION_SEND action to launch an email client installed on your
Android device
Intent email = new Intent(Intent.ACTION_SEND, Uri.parse("mailto:"));
email.putExtra(Intent.EXTRA_EMAIL, recipients);
email.putExtra(Intent.EXTRA_SUBJECT, subject.getText().toString());
email.putExtra(Intent.EXTRA_TEXT, body.getText().toString());
startActivity(Intent.createChooser(email, "Choose an email client from..."));

Tests

Example 1 : Robolectric
http://robolectric.org/

Example 2 : Espresso
https://developer.android.com/training/testing/espresso

http://robolectric.org/
https://developer.android.com/training/testing/espresso

Any Questions?

YO

Is coding an instrument?

