ANDROID
COURSE

By: Mr Adnane Ayman

e s -

e Android o User e Advanced &
Basics Interface Useful Concepts
(Practical Work)
_ _/ _ _/ _ _/

e -

Sy
! lwl lwl

|h| Project
Presentation

4l 2nous

| don't use Google
when coding

S0 STRoONG.

Chapter I: Andrmd Basics

Overview [What is android ? / why android? /features]
Environment Setup (IDEs):

Architecture

Application Components

Running my first application

Resources

Activities

Intents

0 N OMGIEEECO R

Chapter II: User Interface
1. Ul layouts

2. UI Controls

3. Event handlings

Chapter III: Advanced &
Usetul Concepts: practical work

Auto Complete i i

Alert Dialogs

Sending SMS

Sending Emails

Google maps (TP markers)

Progress Bars

Shared Preferences

SQLite / ORMs (Sugar)

. Text to speech

O Firebase(FirebaseAuthenticationManager + FirebaseData
baseManager

"““390.\1.0\9“1";93!\’!‘

INTRODUCTION
TO ANDROID
AND ANDROID
STUDIO

{ Mr Adnane Ayman

What Will We Learn Today

Android Basics:

v Ouverview [What is android ? | why android? /features]
& Environment Setup (IDEs):

& Architecture

v Application Components

v Running my first application

. Resources

v Activities

v Intents

Android is the world’s most popular and dominant
mobile operating system. It's based on Linux and is
open-source. It runs on a wide variety of hardware,
including smartphones, smart watches, cars, televisions,
digital cameras, game consoles and more. It was founded
by Andy Rubin and three others in October 2003 and got
acquired by Google in August 2005.

Codename API Distribution

233- Gingerbread 10 0.3%
2.3.7 2011

4.0.3 - lce Cream Sandwich 15 0.3%
4.0.4

4.1.x Jelly Bean 16 1.2%
4. 2. % 17 1.5%
4.3 18 0.5%
4.4 KitKat 19 65.9%
5.0 Lollipop 21 3.0%
5.1 22 11.5%
6. Marshmallow 23 16.9%
7.0 Nougat 24 11.4%
71 25 7.8%
8.0 Oreo 26 12.9%
81 27 15.4%
) Pie 2018 28 10.4%

Worlwide Market Share

Android KaioS Unknown Samsung Windows

76.67% 22.09% 0.42% 0.21% 0.17% 0.15%

Mobile Operating System Market Share Worldwide - October 2019

With Over 2.5 Billion monthly active users

Y Android?

Open Source

Distribute your ‘

app anywhere Larger Developer
(Playstore, and community
Amazon,Appstor reach
e..)

Android

*® - &

Rich
development
Environment

Free SDK ,IDE
and emulator

Beautiful Ul
Android OS basic screen provides a
beautiful and intuitive user interface.

Connectivity
GSM/EDGE, IDEN, CDMA, EV-DO, UMTS,

Bluetooth, Wi-Fi, LTE, NFC and WiMAX.

Storage
SQLite, a lightweight relational database, is

used for data storage purposes.

Media support
MP3, MID], Ogg Vorbis, WAV, JPEG, PNG,

GIF, SVG ...

Messaging
SMS and MMS

Web browser
Based on the open-source WebKit layout

engine, coupled with Chrome's V8
JavaScript engine supporting HTML5 and

CSS3.

Multi-touch
Android has native support for multi-
touch which was initially made available in

handsets.

Multi-tasking
User can jump from one task to another

and same time various application can run
simultaneously.

GCM

Google Cloud Messaging (GCM) is a
service that lets developers send short
message data to their users on Android
devices, without needing a proprietary
sync solution.

Android Beam

A popular NFC-based technology that lets
users instantly share, just by touching two
NFC-enabled phones together.

roid Plateform Overview

APPLICATIONS

LINUX KERNEL

AVAR Py
p QG | 'j”lf}.-'»'

*1N = e M.
Sluetooth Dr

Android is actually a system of the Linux family, for once
without the GNU tools. The OS is based on:

® A Linux kernel (and its drivers)
v a virtual machine: Dalvik Virtual Machine

k& applications (browser, contact management, telephony
application ...)

[Dalvik] is the name of the open-source virtual machine used on
Android systems. This virtual machine is running .dex files and
is not compatible with a JVM of the type Java SE or even Java
ME

What Do I Need To Build An
R &) Android App?

 Java Programming Language & XML
* Android SDK & SDK Tools

e Android Studio
 The desire to learn

You can start the development of your Android application on
one of the following operating system:s:

* Microsoft Windows XP or later.

* Mac OS X 10.5.8 or later with Intel chip.

 Linux, including GNU C Library 2.7 or later.

Second, all the tools needed to develop Android apps are
available for free and can be downloaded from the web. Below is
a list of the software you will need before you start programming
your Android application.

» Java JDKS5 or later

e Android Studio

You can download the latest version of Java JDK from Oracle's
Java site

i . You will find instructions for installing
JDK in downloaded files, follow the given instructions to install
and configure the setup. Finally set PATH and JAVA_HOME
environment variables to refer to the directory that
contains java and javac, typically java_install dir/bin and
java_install_dir respectively.

Android IDEs

There are so many sophisticated Technologies are available to
develop android applications, the familiar technologies, which
are predominantly using tools as follows

 Eclipse IDE(Deprecated)

http://www.oracle.com/technetwork/java/javase/downloads/index.html
https://www.tutorialspoint.com/android/android_studio.htm

¥ We are going to Freeze‘_ We only have one option left
B {0 dedth if we don't do

somefhmg

Android -

N Studio

I Project .
PIP4Android
> | .gradle

* Java: Java class files containing app logic
> [1.idea * Res: Ditferent resource files
" buie e Anim: Animation resource files
libs

e Drawable: Images
v Bl e Drawable-Xdpi: Images depending on

+ 1:Project
<

7: Structure

v main
java

< Captures

I

4

ssrij.brookes.pip4android

anim

drawable
drawable-hdpi
drawable-mdpi
drawable-nodpi

screen density

* Layout: App layout files

e Menu: Layout menu files

 Values: Value files (strings, colors,

drawable-xhdpi
drawable-xxhdpi

arrays, etc)
e Values-vX: Value files depending on API
vehis level

B
3
>
3
3
i
B
»
[
>
3
=
-

#» Build Variants

s e Values-Xdp: Value files depending on
‘ And:::iManifest.xml
WO i o XML: XML files
- Sn e AndroidManifest.xml: App metadata file
.| newrelic.properties
proguard-android.txt

values-w820dp
screen density
« ic_launcher-web.png
* build.gradle
* build.gradle: Build related settings
proguard-rules.pro

Application components are the essential building
blocks of an Android application. These components
are loosely coupled by the application manifest

tile AndroidManifest.xml that describes each
component of the application and how they interact.
There are following four main components that can be
used within an Android application :

N

AINT PETERSBURG

P
O

12

ALZBURG

September, 2014

24 September, 2014

& They dictate the UI and handle the
user interaction to the smart phone
screen

& Every app has at least one activity

k& Activities can be full-screen, floating
or embedded inside another activity

vyoaAe 19 Run YyEAAH A E N REC

< Apps Q ! €& Running app Q

a K Come B © A service is a long running

operation in the background
| SO

s & There are two types of services
I#

in Android — Bounded (which
runs as long as components

strs ' e which bind to it run) and
@ g Coudcomectsenice - Unbounded (which runs

A sttt : indefinitely)
J comect k Services run on the main

d ‘ ervic STOP
9

thread of the application by
default

lg;‘ com.qualcomm.qeriimsgtunnel M 4 BluetoothService

BroadcastReceiver

2 A broadcast is a system or app
event that can be “broadcasted”
so other apps/services can listen
for it

2 Broadcasts are handled by a
BroadcastReceiver, which is a
- component that allows you to
listen for broadcasts
® A BroadcastReceiver can be
implemented in
AndroidManifest.xml, or
dynamically by calling
registerReceiver(), or both

Content Providers/Resolvers

& A content provider allows you to
store data in your app in a
structured way, similar to a
relational database like SQL, for
the purpose of providing it to

=
other apps. Example usage:
App Contacts app, SMS app, etc
. Database » 2« A content resolver allows you to
get data from a content provider
.

or manipulate its data (modity;,
delete, update, etc)

Update

& You cannot request to read data
from a content provider at
runtime, it has to be declared in
AndroidManifest.xml

™

* i[O @ | 11054

* An intent is an abstract description of
an operation to be performed. Think
of it as an “intention” to do
something

@ Open with Aurora * Intents can be used to start activities,
services or send a broadcast

* Intents are of two types — Explicit

it s iftharent: 0 (when you know what exactly you

@ Fireiox want to do), and Implicit (when

you're not sure what you want to do)

JUST ONCE ALWAYS

@ Firefox Beta

€ Chrome

BNV S WN -

AndroidManifest.xml x

<?xml version="1.0" encoding="utf-8"7>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.ssrij.quicklock" >
<uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED" />
<application
android:allowBackup="true"
android:icon="@nipmap/ic_launcher"
android:label="WearPIN"
android: theme="@style/AppTheme" >
<meta-data
android:name="com.google.android.gms.version"
android:value="7095000" />
<activity
android:name=",MainActivity"
android:label="WearPIN" >
<intent-filter>
<action android:name="android.intent.action.MAIN" />

<category android:name="android,intent.category.LAUNCHER" />

</intent-filter>
</activity>
<receiver android:name=",BootCompleteBroadcastReceiver">
<intent-filter>
<action android:name="android.intent.action.BOOT_COMPLETED" />
</intent-filter>
</receiver>|
<service android:name=" WearPINService" >
<intent-filter>

<action android:name="com.google.android.gms.wearable.BIND_ LISTENER"

</intent-filter>

</service>

<service
android:name=".WearPINDeviceService"
android:enabled="true"
android:exported="false" >

</service>

</application>

</manifest>

/>

Is the file which describes the
fundamental characteristics
of the app and defines each
of its components.

Layouts

A layout defines the visual structure for a user
interface, such as the Ul for an activity or app widget

 Layouts can be defined both in XML or
programmatically using View and ViewGroup objects

* There are 5 different types of Layouts in Android:
LinearLayout, RelativeLayout, FrameLayout,
TableLayout and AbsoluteLayout

<Relativelayout xmlns:android="http://schemas.android.com/apk/res/android"
android: layout_width="match_parent"”
android:layout_height="match_parent" >

<EditText
android:id="@+1d/name"
android: layout_width="match_parent”
AIRFRANCE # android:layout_height="wrap_content" />
<Button

android:layout_width="96dp"

android: layout_height="wrap_content"

indroid:layout_below="@1d/name"

android:layout_alignParentRight="true"

android:text="@string/done" />
</Relativelayout>

Java = <lass — dex

-

Java Compiler cx

= Android application starts its life as Java Source code.
= Compiled by Javac to byte code (.class files).
= Byte code is input to Android SDK.

The dx tool available in the SDK converts Java
bytcode to DVM bytcode at build time

The dx format is a highly efficient and compact
bytecode

= Android SDK converts it to .dex files, which run on
Dalvik Vm.

Development

Debugging
and
Testing

Publishing

Install the Android SDK,
Android Development Tools,
and Android platforms.

Create Android Virtual Devices
and connect hardware devices
that will be used for testing.

Create an Android project with
your source code, resource files,
and Android manifest file.

Build and run your application
In debug mode

Debug your application
using the Android debugging
and logging tools

Test your application using the
Android testing and
instrumentation framework

Configure, build, and test your
application in release mode.

for release

Publicize, sell, and distribute
application your application to users.

Running my first application

The first step is to
create a simple
Android Application
using Android studio.
When you click on
Android studio icon, it
will show screen as
shown here:

The next level of
installation should
contain selecting the
activity to mobile, it
specifies the default
layout for Applications.

¥ Create New Project

Choose your project

Phone and Tablet

Add No Activity

Fragment + ViewMode

Empty Activity

Creates a new empty activity

€ :

Basic Activity Empty Activity Bottom Mavigation Activity

Fullscreen Activity Master/Detail Flow Navigation Drawer Activity

&

Next Cance

® Create New Project

Configure your project

A new installation frame
should ask Application
name, package
information and location
of the project. You need
to specify Minimum
SDK, and declare as
API:17 Android 4.2(Jelly
Bean)

Creates a new empty activity

Name

My Application

Package name

com.example.myapplication

Save location

C:\Users\Alucard\AndroidStudioProjects\MyApplication

Language

Kotlin

Minimum APl level | APl 17: Android 4.2 (Jelly Bean)

Your app will run on approximately 98.1% of devices,

This project will support instant apps

Previous

Cance

Finish

At the final stage it going to be open development tool to write the application code.

File Edit View Navigate Code Analyze Refacior Build Run Tools VCS Window Help

P MyApplication) I app |/ I src) I main) B java) Bl com) Bl example | B myapplication | (¢ MainActivity A ®app ¥ Nodevices ¥ P & 15 r O N LY QR
& W Android v O = & — Aacivitymainml ¢ MainActivitykt * .
L |
7 ackage | cati v
2 A HRPP package com.example.myapplication g
i' ¥ I manifests B
4)) import .. &
n{,AndrmdMamfest.xml .
g Y Wjava #1 class MainActivity : AppCompatActivity() { L4
g ¥ BB com.examplemyapplication g
m
2 QMainAc’[ivity of override fun onCreate(savedInstanceState: Bundle?) { %
L]
£ » BN com.examplemyapplication (androidTest) super.onCreate (savedinstanceState)
b o : sttt m=i
E > ﬂcom.example.myapplicatian(test) } setContentView(R.layout.activity main)
& P Igjava (generated))
v e e
» [drawable
> [N layout
» [N mipmap
. > [values
E > & Gradle Scripts
@
&
-
3
o
a
&l
*x
S Buld: Build Output » Sync o -
s A ¥+ Build: completed successfully at 11/9/2019 5:39 PM 3521 ms
% ¥+ Run build C\Users\Alucard\AndraidStudioProjects\MyApplication 25680 ms
[+5] -
= Ty > s/Load_buﬂd _ 9 ms
» + Configure build 15205 ms
, + Calculate task graph 658ms [0
G b Runtasks Mms 9
2 =
2)
i -
(%) =
5 :
£
a [}
q L

" Android

Java => Contains the .java source

"3 app files for your project.

manifests

& AndroidManifest.xml

java . res/drawable => A directory for
com.example.tutorialspoint7.myapplication drawable ObjeCtS

com.example.tutorialspoint7.myapplication (android]

com.example.tutorialspoint7.myapplication (tes

- s . res/layout => A directory for files
drawable that define your app's Ul

layout

@ activity_mainxml

res/values => A directory for other
. _ various XML files that contain a
ic_launcher.png A o

values collection of strings and colours

& colors.xml definitions...

dimens.xml [

mipmap

& stringsxml

AndroidManifest.xml

@ styles.xml
** Gradle Scripts

2 build.gradle (Project: MyApplicatior . Build.gradle => contains

> build.gradle (Module: compileSdkVersion,
I”::'jf:o::fh:” e bu.ildToolsV.ersion, application.ld,
D settings.gradle (Project Setting minSdkVersion, targetSdkVersion,

il local.properties (SDK Loca versionCode and versionName

The Main Actioity File

The main activity code is a Java file MainActivity.java. This is the actual application file
which ultimately gets converted to a Dalvik executable and runs your application.
Following is the default code generated by the application wizard for

Hello World! application

package com.example.myapplication

Ln;::t androidx.appcompat.app.ippCompatActivity

1mport android.os.Bundle
~las=s MainActivity : AppCompatActivity() {

sverride fun onCreate (savedInstanceState: Bundle?) |
super.onCreate (savedInstanceState)

setContentView(R.layout.activity main)

}

Here, R.layout.activity_main refers to the activity_main.xml file located in
the res/layout folder. The onCreate() method is one of many methods that are figured
when an activity is loaded.

Following is the list of tags which you will use in your manifest file to specify different
Android application components :

<activity>elements for activities; <service> elements for services ;<receiver> elements for
broadcast receivers ;<provider> elements for content providers

<%xml wversion encoding 7=
<manifest xmlns:

package

W

<application
:allowBackup
:icon
:label
:roundIcon
:supportsRtl
: thems =
<activity :name >
<intent-filter>

“<action :nams S=

<category :names /=
</intent-filter>
</activity>

</application>

{fmanifestﬂ

The strings.xml file is located in the res/values folder and it
contains all the text that your application uses. For example,
the names of buttons, labels, default text, and similar types of
strings go into this file.

<resources>
<string name="app name">HelloWorld</string>
<string name="hello world">Hello world!</string>

<string name="menu settings">Settings</string>

<string name="title activity main">MainActivity</string>

</resources>

The activity_main.xml is a layout file available in res/layout directory, that is referenced

by your application when building its interface
2> v Ov 0 Pixely m29v » @ 3% @

<?xml version encoding
kandroidx.canstraintlayaut.widget.CanstraintIayaut xmlns:

Jx L™

xmlns:

M% Palette
Q
4
74
=
=

xmlns:

<TextView

:lay
:lay
:layout
:layout constraintTop_ toTopOf

straintLef

onstraintRight toRic

</androidx.constraintlayout.widget.ConstraintLayout>

androidx.constraintlayout.widget.ConstraintLayout

Running the application

‘ﬂ

¥ARs500

Congratulations!!! you have
developed your first Android
Application

Me: just wrote 200

unsaved lines of code
My computer :

Friendly
reminder

. A % LR ",
| B
(\ . ~ “~
i .-— I .'..\ 7 -

| have decided that | want to die.?, 8\

RS | ol N AR |
\ . iy & : il e

When your Android application is compiled, a R class gets generated, which contains
resource IDs for all the resources available in your res/ directory. You can use R class to
access that resource using sub-directory and resource name or directly resource ID

To access res/drawable/myimage.png and set an ImageView you will use following code:

ImageView imageView = (ImageView) findViewByld(R.id.myimageview);
imageView.setlmageResource(R.drawable.myimage);

Consider next example where res/values/strings.xml has following definition

<?xml version="1.8" encoding="utf-8"?>
<resourcess

<string name="hello">»Hello, World!</string>

</resources>»

Now you can set the text on a TextView object with ID msg using a resource ID as
follows :

TextView msgTextView = (TextView) find ViewById(R.id.msg);
msgTextView.setText(R.string.hello);

Example 3 :

Consider the following resource XML res/values/strings.xml file that includes a color
resource and a string resource:

<?xml version="1.8" encoding="utf-8"?>

<resources
<color name="opaque_red">#f08</color>
<string name="hello">Hello!</string>
</resources>

Now you can use these resources in the following layout file to set the text color and
text string as follows :

<?xml version="1.8"
<EditText xmlns:android="http:// .android. com/apk/res/android"
android:layout _width="fill parent"

android:layout_height="f1ll parent”

android:textColor="@color/opaque_red"
android:text="@string/hello" />

Activity

launched
> onCreate()
onStart() -« onRestart()
‘ 4
User navigates
4 ‘—
10 the activity onResume()
App process Activity
killed J running
l
Another activity comes

into the foreground

User returns
‘ 1o the activity
Apps with higher priority
need memory onPause()

LIFECYCLE.tXt The activity is

no longer visible

User navigates
Clle here ‘ to the activity
onStop())

l

The activity is finishing or
being destroyed by the system

v

onDestroy()

:

Activity
shut down

Linear Layout

A layout that organizes its
children into a single
horizontal or vertical row. It
creates a scrollbar if the
length of the window
exceeds the length of the
screen.

Relative Layout

Enables you to specify the
location of child objects
relative to each other (child
A to the left of child B) or to
the parent (aligned to the
top of the parent).

Web View

<html>
<!-- web page -->

</html>

Displays web pages.

& When the content for your layout is dynamic or not pre-determined, you
can use a layout that subclasses AdapterView to populate the layout
with views at runtime.

List View Grid View

Displays a scrolling single Displays a scrolling grid of
column list. columns and rows.

& Input controls are the interactive components in your app's
user interface. Android provides a wide variety of controls
you can use in your Ul, such as buttons, text fields, seek bars,
check box, zoom buttons, toggle buttons, and many more.

Button

Text field |

e ———

test.txt

& Input controls are the interactive components in your app's user interface.
Android provides a wide variety of controls you can use in your UI, such as
buttons, text fields, seek bars, check box, zoom buttons, toggle buttons, and
many more.

Example 1: Button with id = myButton

& Step 1:
Public class MainActivity extends AppCompatActivity implements
View.OnClickListener

 Step 2:

Private Button button;

(inside on create)=>

button = (Button) find ViewById(R.id.myButton);
button.setOnClickListener(this);

UI Controls

Example 1: Button with id = myButton
& Step 3:

@override

Public void onClick(View view) {
if(view == myButton){

//traitement+ toast

Toast.makelext(getApplicationContext(),“click!!", Toast LENGTH_SHORT
).show();

)
}

UI Controls

Example 2: Button style

 Step 1: paste the xml generated code in layout.xml

 Step 2: paste the buttonShape.xml generated code in the drawable
folder

Example 3 : changing case of textview
TP ; help (getText,setText, toLowerCase, toUpperCase)

https://angrytools.com/android/button/

i s a0 Bas

Example 4 : Basic calculator

Result
: XX

An Android Intent is an abstract description of an operation to be performed.

Example 1 :

/| Explicit Intent by specitying its class name

Intent i = new Intent(FirstActivity.this, Second Activity.class);
/[Starts TargetActivity

startActivity(i);

These intents (explicit) designate the : e v
target component by its name and they RS ZEA0L) Second Activity
are typically used for application- :
internal messages - such as an activity /’—\>m;, s the
starting a subordinate service or , . second
launching a sister activity. Click me ! Activity

Intents

Example 1 : Implicit Intent

String q = “Tesla";

Intent intent = new Intent(Intent. ACTION_WEB_SEARCH);
intent.putExtra(SearchManager.QUERY, q);
startActivity(intent);

Case user
e % 0 845 unknown

Example 4 : &
Msin Screen

Case user

known Activity
+

greetings

Android Toast class provides a handy way to show users alerts but problem
is that these alerts are not persistent which means alert flashes on the screen
for a few seconds and then disappears.

Example :
& Step 1: Create Notification Builder
NotificationCompat.BuildermBuilder=new NotificationCompat.Builder(this);

. Step 2: Once you have Builder object, you can set its Notification properties
using Builder object as per your requirement. But this is mandatory to set at
least following —

z A small icon, set by setSmalllcon()
z A title, set by setContentTitle()
@ Detail text, set by setContentText()

=>

mBuilder.setSmalllcon(R.drawable.notification_icon);

mBuilder.setContentTitle("Notification Alert, Click Me!");
mBuilder.setContentText("Hi, This is Android Notification Detail!");

Example :

e Step 3: Attach Actions

@ This is an optional part and required if you want to attach an action with
the notification. An action allows users to go directly from the
notification to an Activity in your application

Intent resultIntent = new Intent(this, MainActivity.class);
TaskStackBuilder stackBuilder = TaskStackBuilder.create(this);
stackBuilder.addParentStack(MainActivity.class);

// Adds the Intent that starts the Activity to the top of the stack
stackBuilder.addNextIntent(resultIntent);

PendingIntent resultPendingIntent =
stackBuilder.getPendingIntent(0,PendingIntent. FLAG_UPDATE_CURREN
T); mBuilder.setContentIntent(resultPendingIntent);

Example :

o Step 4: Issue the notification

@ Finally, you pass the Notification object to the
system by calling NotificationManager.notify() to
send your notification.

NotificationManager mNotificationManager =
(NotificationManager)

getSystemService(Context. NOTIFICATION_SERVICE
);

// notificationID allows you to update the notification
later on.

mNotificationManager.notify(notificationlID,
mBuilder.build());

sugar ORM (5QLite)

Step 1: Download via Gradle :

k& implementation 'com.github.satyan:sugar:1.5’
Step 2: Manifest File inside Application :

k android:name="com.orm.SugarApp”

k& outside <Application>

<meta-data android:name="DATABASE" android:value="Vehicles.db" />
<meta-data android:name="VERSION" android:value="2" />

<meta-data android:name="QUERY LOG" android:value="true" />
<meta-data android:name="DOMAIN PACKAGE NAME"
android:value="com.example.myapplication.vehiclesModel" />

sugar ORM (5QLite)

Step 3: Create the Model :
Step 4: Create the Layout / Activity:

Sending a Mail

Example .

// You will use ACTION_SEND action to launch an email client installed on your
Android device

Intent email = new Intent(Intent. ACTION_SEND, Uri.parse("mailto:"));
email.putExtra(Intent. EXTRA_EMALIL, recipients);

email.putExtra(Intent. EXTRA_SUBJECT, subject.getText().toString());

email. putExtra(Intent. EXTRA_TEXT, body.getText().toString());
startActivity(Intent.createChooser(email, "Choose an email client from..."));

Tests

Example 1 : Robolectric

ROBOLECTRIC

Ul TESTING FOR ANDROID

Example 2 : Espresso

http://robolectric.org/
https://developer.android.com/training/testing/espresso

Any Questions?

Y9

[s coding an instrument? i’:

