
Zouhair Rimale, Ph.D.
Expert technique .NET | SharePoint | ASP.NET MVC | WEB API | Angular

Polymorphism Third Pillar of OOP

C# Intermediate

Zouhair Rimale, Ph.D.
Expert technique .NET | SharePoint | ASP.NET MVC | WEB API | Angular

Method Overriding

C# Intermediate

• During high school: C/C++ Programmer

• In 2006: Started with Java

• In 2009: Started with C/C++

Zouhair Rimale, Ph.D.
Expert technique .NET | SharePoint | ASP.NET MVC | WEB API | Angular

C# Intermediate

• During high school: C/C++ Programmer

• In 2006: Started with Java

• In 2009: Started with C/C++

Zouhair Rimale, Ph.D.
Expert technique .NET | SharePoint | ASP.NET MVC | WEB API | Angular

C# Intermediate

• During high school: C/C++ Programmer

• In 2006: Started with Java

• In 2009: Started with C/C++

Zouhair Rimale, Ph.D.
Expert technique .NET | SharePoint | ASP.NET MVC | WEB API | Angular

C# Intermediate

• During high school: C/C++ Programmer

• In 2006: Started with Java

• In 2009: Started with C/C++

Zouhair Rimale, Ph.D.
Expert technique .NET | SharePoint | ASP.NET MVC | WEB API | AngularC# Intermediate

Zouhair Rimale, Ph.D.
Expert technique .NET | SharePoint | ASP.NET MVC | WEB API | Angular

Demo Method Overriding

C# Intermediate

• During high school: C/C++ Programmer

• In 2006: Started with Java

• In 2009: Started with C/C++

Zouhair Rimale, Ph.D.
Expert technique .NET | SharePoint | ASP.NET MVC | WEB API | AngularC# Intermediate

• During high school: C/C++ Programmer

• In 2006: Started with Java

• In 2009: Started with C/C++

Zouhair Rimale, Ph.D.
Expert technique .NET | SharePoint | ASP.NET MVC | WEB API | AngularC# Intermediate

Zouhair Rimale, Ph.D.
Expert technique .NET | SharePoint | ASP.NET MVC | WEB API | Angular

Abstract Classes and Members

C# Intermediate

• During high school: C/C++ Programmer

• In 2006: Started with Java

• In 2009: Started with C/C++

Zouhair Rimale, Ph.D.
Expert technique .NET | SharePoint | ASP.NET MVC | WEB API | AngularC# Intermediate

• During high school: C/C++ Programmer

• In 2006: Started with Java

• In 2009: Started with C/C++

Zouhair Rimale, Ph.D.
Expert technique .NET | SharePoint | ASP.NET MVC | WEB API | AngularC# Intermediate

• During high school: C/C++ Programmer

• In 2006: Started with Java

• In 2009: Started with C/C++

Zouhair Rimale, Ph.D.
Expert technique .NET | SharePoint | ASP.NET MVC | WEB API | AngularC# Intermediate

• During high school: C/C++ Programmer

• In 2006: Started with Java

• In 2009: Started with C/C++

Zouhair Rimale, Ph.D.
Expert technique .NET | SharePoint | ASP.NET MVC | WEB API | AngularC# Intermediate

• During high school: C/C++ Programmer

• In 2006: Started with Java

• In 2009: Started with C/C++

Zouhair Rimale, Ph.D.
Expert technique .NET | SharePoint | ASP.NET MVC | WEB API | AngularC# Intermediate

• During high school: C/C++ Programmer

• In 2006: Started with Java

• In 2009: Started with C/C++

Zouhair Rimale, Ph.D.
Expert technique .NET | SharePoint | ASP.NET MVC | WEB API | AngularC# Intermediate

• During high school: C/C++ Programmer

• In 2006: Started with Java

• In 2009: Started with C/C++

Zouhair Rimale, Ph.D.
Expert technique .NET | SharePoint | ASP.NET MVC | WEB API | AngularC# Intermediate

• During high school: C/C++ Programmer

• In 2006: Started with Java

• In 2009: Started with C/C++

Zouhair Rimale, Ph.D.
Expert technique .NET | SharePoint | ASP.NET MVC | WEB API | AngularC# Intermediate

• During high school: C/C++ Programmer

• In 2006: Started with Java

• In 2009: Started with C/C++

Zouhair Rimale, Ph.D.
Expert technique .NET | SharePoint | ASP.NET MVC | WEB API | AngularC# Intermediate

• During high school: C/C++ Programmer

• In 2006: Started with Java

• In 2009: Started with C/C++

Zouhair Rimale, Ph.D.
Expert technique .NET | SharePoint | ASP.NET MVC | WEB API | AngularC# Intermediate

Zouhair Rimale, Ph.D.
Expert technique .NET | SharePoint | ASP.NET MVC | WEB API | Angular

Demo Abstract Classes and Members

C# Intermediate

• During high school: C/C++ Programmer

• In 2006: Started with Java

• In 2009: Started with C/C++

Zouhair Rimale, Ph.D.
Expert technique .NET | SharePoint | ASP.NET MVC | WEB API | AngularC# Intermediate

• During high school: C/C++ Programmer

• In 2006: Started with Java

• In 2009: Started with C/C++

Zouhair Rimale, Ph.D.
Expert technique .NET | SharePoint | ASP.NET MVC | WEB API | AngularC# Intermediate

• During high school: C/C++ Programmer

• In 2006: Started with Java

• In 2009: Started with C/C++

Zouhair Rimale, Ph.D.
Expert technique .NET | SharePoint | ASP.NET MVC | WEB API | AngularC# Intermediate

• During high school: C/C++ Programmer

• In 2006: Started with Java

• In 2009: Started with C/C++

Zouhair Rimale, Ph.D.
Expert technique .NET | SharePoint | ASP.NET MVC | WEB API | AngularC# Intermediate

Zouhair Rimale, Ph.D.
Expert technique .NET | SharePoint | ASP.NET MVC | WEB API | Angular

Sealed Classes and Members

C# Intermediate

• During high school: C/C++ Programmer

• In 2006: Started with Java

• In 2009: Started with C/C++

Zouhair Rimale, Ph.D.
Expert technique .NET | SharePoint | ASP.NET MVC | WEB API | AngularC# Intermediate

• During high school: C/C++ Programmer

• In 2006: Started with Java

• In 2009: Started with C/C++

Zouhair Rimale, Ph.D.
Expert technique .NET | SharePoint | ASP.NET MVC | WEB API | AngularC# Intermediate

• During high school: C/C++ Programmer

• In 2006: Started with Java

• In 2009: Started with C/C++

Zouhair Rimale, Ph.D.
Expert technique .NET | SharePoint | ASP.NET MVC | WEB API | AngularC# Intermediate

• During high school: C/C++ Programmer

• In 2006: Started with Java

• In 2009: Started with C/C++

Zouhair Rimale, Ph.D.
Expert technique .NET | SharePoint | ASP.NET MVC | WEB API | AngularC# Intermediate

Zouhair Rimale, Ph.D.
Expert technique .NET | SharePoint | ASP.NET MVC | WEB API | Angular

Exercises

C# Intermediate

Exercise 1 : Design a database connection
To access a database, we need to open a connection to it first and close it once our job is done.

Connecting to a database depends on the type of the target database and the database management system (DBMS). For

example, connecting to a SQL Server database is different from connecting to an Oracle database. But both these connections

have a few things in common:

• They have a connection string
• They can be opened
• They can be closed
• They may have a timeout attribute (so if the connection could not be opened within the timeout, an exception will be thrown).
Your job is to represent these commonalities in a base class called DbConnection. This class should have two properties:

ConnectionString : string
Timeout : TimeSpan

A DbConnection will not be in a valid state if it doesn’t have a connection string. So you need to pass a connection string in the constructor
of this class. Also, take into account the scenarios where null or an empty string is sent as the connection string. Make sure to throw an
exception to guarantee that your class will always be in a valid state.

Our DbConnection should also have two methods for opening and closing a connection. We don’t know how to open or close a connection
in a DbConnection and this should be left to the classes that derive from DbConnection. These classes (eg SqlConnection or
OracleConnection) will provide the actual implementation. So you need to declare these methods as abstract.

Derive two classes SqlConnection and OracleConnection from DbConnection and provide a simple implementation of opening and closing
connections using Console.WriteLine(). In the real-world, SQL Server provides an API for opening or closing a connection to a database. But
for this exercise, we don’t need to worry about it.

Exercise 2 : Design a database command
Now that we have the concept of a DbConnection, let’s work out how to represent a DbCommand.
Design a class called DbCommand for executing an instruction against the database. A DbCommand cannot be in a valid state without
having a connection. So in the constructor of this class, pass a DbConnection. Don’t forget to cater for the null.

Each DbCommand should also have the instruction to be sent to the database. In case of SQL Server, this instruction is expressed in T-SQL
language. Use a string to represent this instruction. Again, a command cannot be in a valid state without this instruction. So make sure to
receive it in the constructor and cater for the null reference or an empty string.

Each command should be executable. So we need to create a method called Execute(). In this method, we need a simple implementation as
follows:
Open the connection
Run the instruction
Close the connection

Note that here, inside the DbCommand, we have a reference to DbConnection. Depending on the type of DbConnection sent at runtime,
opening and closing a connection will be different. For example, if we initialize this DbCommand with a SqlConnection, we will open and
close a connection to a Sql Server database. This is polymorphism. Interestingly, DbCommand doesn’t care about how a connection is
opened or closed. It’s not the responsibility of the DbCommand.
All it cares about is to send an instruction to a database.
For running the instruction, simply output it to the Console. In the real-world, SQL Server (or any other DBMS) provides an API for running
an instruction against the database. We don’t need to worry about it for this exercise.

In the main method, initialize a DbCommand with some string as the instruction and a SqlConnection. Execute the command and see the
result on the console.
Then, swap the SqlConnection with an OracleConnection and see polymorphism in action.

