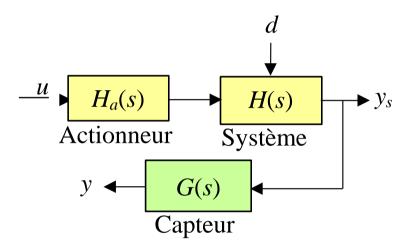
Chapitre: 6

Correction des systèmes linéaires continus asservis

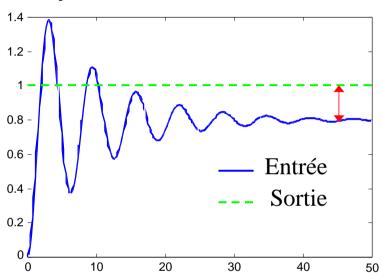

Contenu

- Introduction
 - Problématique de l'asservissement
- Différentes méthodes de correction
 - Correction série, correction parallèle
 - Correction par anticipation
- Eléments du cahier de charges
- Synthèse des correcteurs série usuels
 - Correcteur proportionnel P
 - Correcteurs I, PI, retard de phase
 - Correcteurs PD, avance de phase
 - Correcteur PID

Introduction (1)

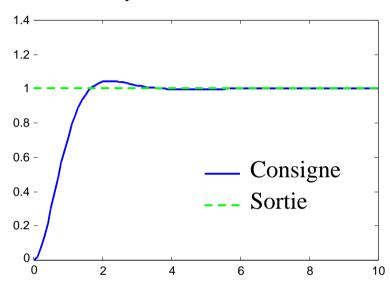
Problématique de l'asservissement

Caractéristiques du système piloté (entité non modifiable)



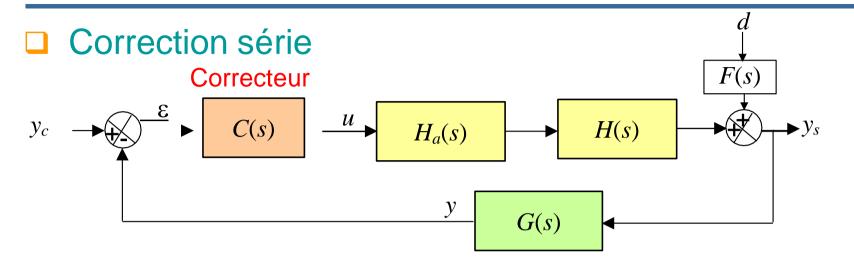
- système mal amorti
- système lent
- système peu précis
- système présentant une tendance à la dérive
- cas extrême : système instable
- Objectif de l'asservissement
 - Amener le système à suivre un comportement fixé par un cahier de charges
 - Comment faire ? Utiliser un dispositif complémentaire : le correcteur en boucle fermée

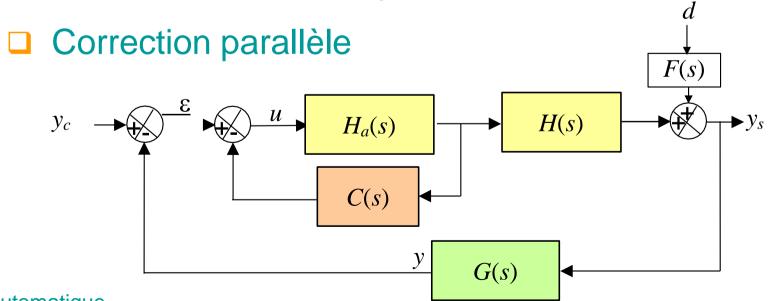
Introduction (2)


Problématique de l'asservissement

Système à commander

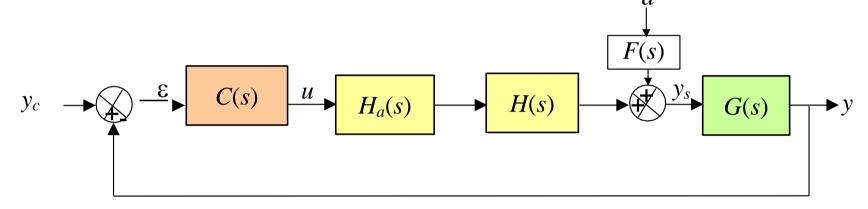
- Réponse oscillatoire
- Réponse mal amortie
- Ecart avec l'entrée en régime établi


Comportement désiré


- Réponse non oscillatoire
- Réponse bien amortie
- Erreur statique nulle

Pour corriger le comportement du système : un correcteur

Méthodes de correction (1)


Rôle du correcteur : élaborer le signal de commande u approprié à partir du signal d'erreur ε

Méthodes de correction (3)

Remarques

- La correction série est la plus couramment utilisée
- Pour la correction série, le schéma d'asservissement est transformé en un asservissement à retour unitaire

$$H_{BONC}(s) = H(s)G(s)$$

$$H(s) = H_a(s)H_s(s)$$

$$H_{BOC}(s) = C(s)H(s)G(s)$$

$$H_{BF}(s) = \frac{H_{BOC}(s)}{1 + H_{BOC}(s)}$$
Automatique

$$Y(s) = G(s)Y_s(s)$$

En général, G(s) = avec λ une constante y et y_c sont alors de même nature

Exigences de l'asservissement (1)

1. Stabilité

On analyse la stabilité par les critères de Routh et de Nyquist

2. Marges de stabilité

- Si marges de stabilité faibles ⇒ système proche de l'instabilité en BF, réponse oscillatoire mal amortie, fort dépassement
- ➤ On règlera les marges de stabilité aux valeurs satisfaisantes suivantes : $m_{\phi} \ge 45^{\circ}$, mg $\ge 10 \text{dB}$

3. Précision en régime permanent

Pour avoir une bonne précision, deux solutions :

- > augmenter le gain en basses fréquences du système non bouclé
- introduire des intégrateurs

Mais, risque de rendre le système instable en BF!!

4. Rapidité

Pour augmenter la rapidité du système en BF, il faut élargir sa bande passante en BF

Correcteurs série usuels

Il y a des correcteurs qui modifient le gain du système en BO (précision), d'autres qui agissent sur la marge de phase (stabilité, rapidité).

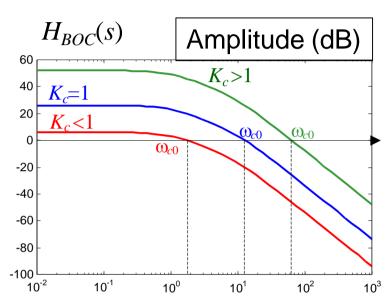
- Correcteurs qui modifient le gain
 - Correcteur proportionnel (P)
 - Correcteur intégral (I)
 - Correcteurs proportionnel-intégral (PI), à retard de phase
- Correcteurs qui modifient la marge de phase
 - Correcteur proportionnel dérivé (PD)
 - Correcteur à avance de phase
- Correcteur réalisant les deux actions
 - Correcteur proportionnel-intégral-dérivateur (PID)

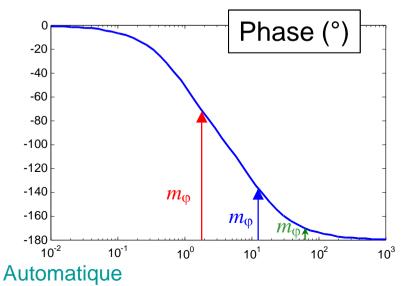
Correcteur proportionnel P (1)

Correcteur P

Le correcteur est un gain K_c : $C(s) = K_c$

Commande du système : $u(t) = K_c \varepsilon(t)$


Effets du correcteur


- Modification du gain du système en BO
- ightharpoonup Si $K_c > 1$ (amplification)
 - amélioration de la précision du système en BF
- ightharpoonup Si $K_c < 1$ (atténuation)
 - diminution de la précision du système en BF

Le correcteur P ne permet pas de régler indépendamment la rapidité, la précision et les marges de stabilité

Correcteur proportionnel P (2)

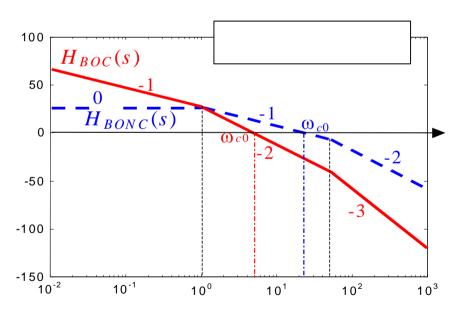
Effets du correcteur

\triangleright Si $K_c > 1$

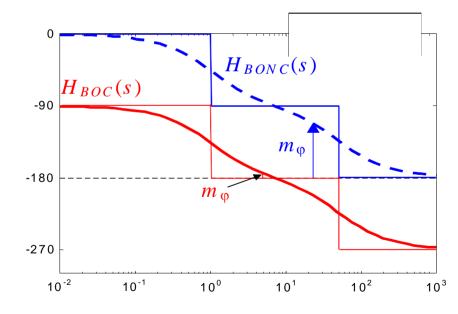
- translation du diagramme de gain de Bode vers le haut
- lacktriangle augmentation de $\omega_{co} \Rightarrow$ augmentation de la rapidité
- diminution de la marge de phase (dégradation de la stabilité en BF)
- > Si $K_c < 1$
 - translation du diagramme de gain de Bode vers le bas
 - \blacksquare diminution de $\omega_{co} \Rightarrow$ diminution de la rapidité
 - Augmentation de la marge de phase (amélioration stabilité)

Correcteur intégral I (1)

FT du correcteur


$$C(s) = \frac{1}{T_i s}$$

 T_i : constante d'intégration


Commande du système

$$u(t) = \frac{1}{T_i} \int_0^t \varepsilon(\tau) d\tau$$

Effets en fréquentiel du correcteur

Augmentation des pentes de +20dB/décade

Translation du diagramme de phase de 90° vers le bas

Correcteur intégral I (2)

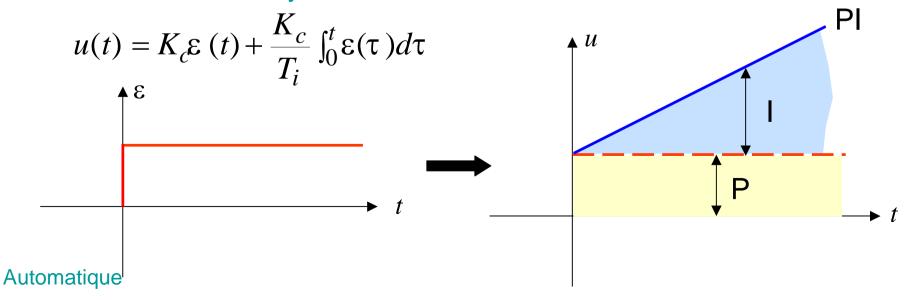
Effets du correcteur

- ◆Introduction d'un intégrateur ⇒ amélioration précision
 - annulation de l'erreur statique, diminution de l'erreur de vitesse
 - > rejet asymptotique des perturbations constantes
- lacktriangle Diminution de la pulsation de coupure à $0 dB \omega_{co}$
 - diminution de la rapidité du système en BF
 - > l'effet intégrateur provoque un ralentissement du système
- ◆Réduction de la marge de phase ⇒ dégradation de la stabilité voire instabilité

Le correcteur I n'améliore que la précision ; les autres performances sont dégradées

Correcteur PI (1)

FT du correcteur


PI: combinaison des correcteurs P et I

Correcteur utilisé en industrie

$$C(s) = K_c + \frac{K_c}{T_i s} = K_c \frac{1 + T_i s}{T_i s}$$

Plus T_i est grande, plus l'action intégrale est faible

Commande du système

13

Correcteur à "retard de phase" (1)

FT du correcteur

$$C(s) = K_c \frac{1 + Ts}{1 + bTs} \quad \text{avec } b > 1$$

En pratique, on choisit $K_c = b$

Le correcteur à retard de phase est une forme approchée du correcteur PI. Il réalise une action intégrale (augmentation du gain en basses fréquences) sans introduire d'intégrateur

Contraintes satisfaites

- Erreur permanente imposée
- Marge de phase imposée
- Rapidité imposée

Correcteur à "retard de phase" (3)

Effets du correcteur

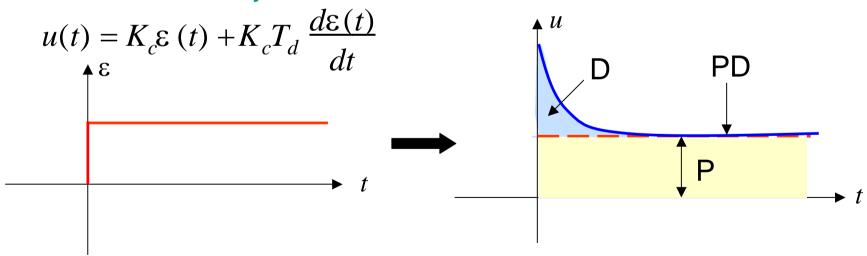
- Augmentation du gain en basses fréquences de 20log₁₀b
 ⇒ effet intégral ⇒ diminution de l'erreur statique en BF (système de classe 0 en BO)
- Diminution de la bande passante à 0dB ω_{co} ⇒ système moins rapide en BF (augmentation de t_m ou de $t_{r,5\%}$)

Eléments de réglage du correcteur

- Introduire dans le correcteur un gain K'c qu'on calcule pour avoir la marge de phase désirée
- Calculer K_c=b pour obtenir la précision imposée
- Choisir la constante de temps T telle que $\frac{1}{T} << \omega_{c0}$ ($\frac{1}{T} \le 0.1\omega_{c0}$) pour ne pas modifier la marge de phase et les performances dynamiques

Correcteur proportionnel dérivé PD (1)

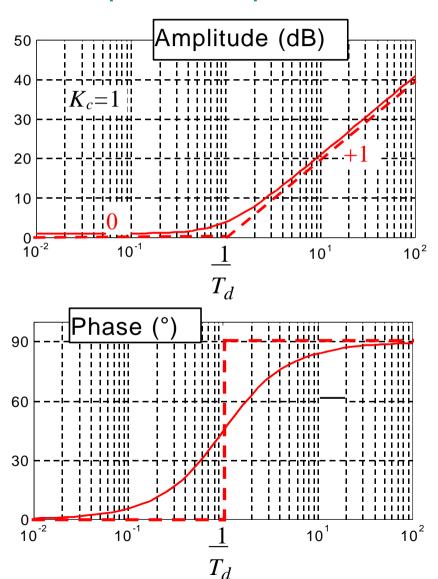
FT du correcteur


PD: combinaison des correcteurs P et D

$$C(s) = K_c \left(1 + T_d s \right)$$

 T_d : constante de dérivation

Plus T_d est grande, plus l'action dérivée est importante


Commande du système

La commande est proportionnelle à l'erreur et à la variation de l'erreur (dérivée)

Correcteur PD (2)

Réponse fréquentielle

Effets du correcteurs

- Amélioration de la stabilité (marge de phase)
- Augmentation de la pulsation $\omega_{co} \Rightarrow$ amélioration de la rapidité $(t_{r,5\%}, t_m \downarrow)$
- Amplification en hautes fréquences (pour $\omega > 1/T_d$) \Rightarrow élargissement de la BP du système en BF \Rightarrow sensibilité aux bruits
- Diminution de l'erreur permanente

Correcteur PID théorique (1)

FT du correcteur

PID: combinaison des correcteurs P, I et D

$$C(s) = K_c \left(1 + \frac{1}{T_i s} + T_d s \right) = K_c \frac{T_i T_d s^2 + T_i s + 1}{T_i s}$$

 T_i : constante d'intégration

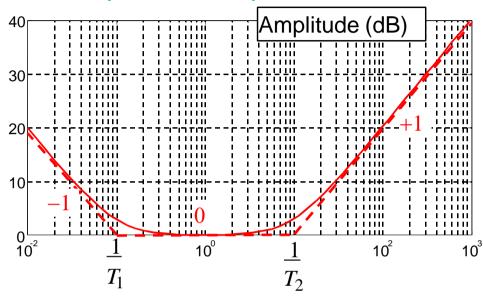
 T_d : constante de dérivation

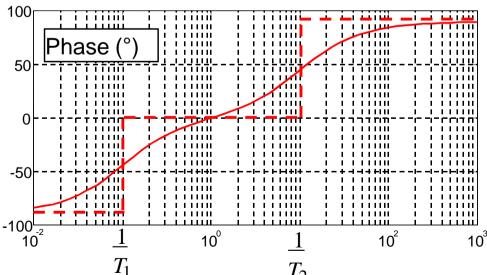
Commande du système

$$u(t) = K_c \varepsilon(t) + \frac{K_c}{T_i} \int_0^t \varepsilon(\tau) d\tau + K_c T_d \frac{d\varepsilon(t)}{dt}$$

Factorisation de C(s)

■ Si
$$T_i > 4T_d$$
, $C(s) = K_c \frac{(1+T_1s)(1+T_2s)}{T_is}$ avec
$$\begin{cases} T_1 + T_2 = T_i \\ T_1 T_2 = T_i T_d \end{cases}$$

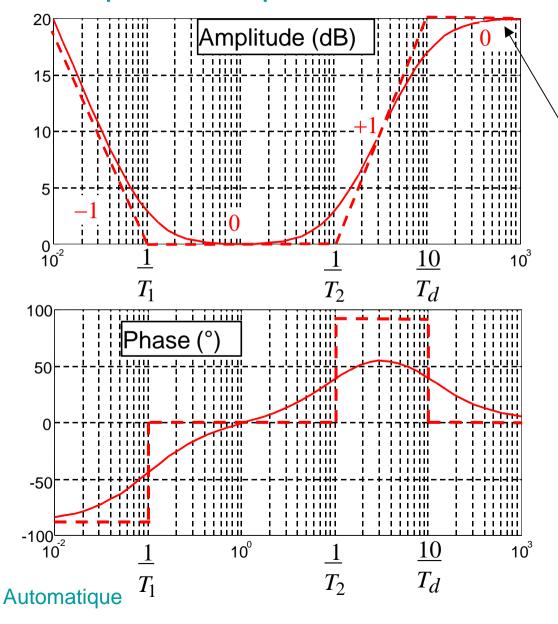

Zéros réels


■ Si
$$T_i < 4T_d$$
, $C(s) = K_c \frac{T^2 s^2 + 2\xi T s + 1}{T_i s}$ avec $\begin{cases} 2\xi T = T_i \\ T^2 = T_i T_d \end{cases}$ $\xi < 1$

Zéros complexes conjugués

Correcteur PID théorique (2)

Réponse fréquentielle


Automatique

Effets du correcteurs

- Amplification en hautes fréquences
 - Effet PD en hautes fréquences
- Gain infini en basses fréquences
- Retard de phase en basses fréquences
 - Effet PI en basses fréquences
- Fréquences moyennes : peu d'influence du correcteur

Correcteur PID

Réponse fréquentielle PID réel

$$C(s) = K_c \frac{\left(1 + \frac{1}{T_i s} + T_d s\right)}{\left(1 + \frac{T_d}{N}\right)}$$

Filtrage des hautes fréquences

Stratégie de synthèse des correcteurs

- Analyse du système (identification, performances dynamiques, réponse fréquentielle)
- 2. Analyse du cahier de charges (traduction en termes d'erreur, de rapidité, de marge de phase, de pulsation ω_{co})
- Choix de la structure du correcteur compte tenu du cahier des charges et des caractéristiques du système
- Calcul des paramètres du correcteur
- Vérification des performances du système corrigé. Si le cahier des charges n'est pas satisfait, retour à 3
- Réalisation de l'asservissement et tests

Correcteurs	Avantages	Inconvénients
Р	Simplicité Meilleure précision	Risque d'instabilité si $K_c >> 1$
PI	Simplicité Erreur statique nulle	Système parfois lent en BF
PID	Très utilisé en industrie Action PI + PD	Réglage des paramètres plus difficile