
.NET Framework Overview

.NET Framework, CLR, MSIL, Assemblies, CTS, etc.

Abdallah MOUJAHID
PMP®, COBIT® V5 , ITIL® V3, ISO 27002

Table of Contents

1. What is .NET?

2. What is .NET Framework?

3. Common Language Runtime (CLR)

4. Managed Code

5. Intermediate Language MSIL

6. Assemblies and Metadata

7. .NET Applications

Table of Contents (2)

8. Common Language Infrastructure (CLI) and
integration of different languages

 Common Language Specification (CLS)

 Common Type System (CTS)

9. Framework Class Library

10. Integrated Development Environment Visual
Studio

.NET Framework
Microsoft's Platform for

Application Development

What is the .NET Platform?

 The .NET platform

 Microsoft's platform for software development

 Unified technology for development of almost
any kind of applications

 GUI / Web / mobile / server / cloud / etc.

 .NET platform versions

 .NET Framework

 .NET Compact Framework

What is .NET Framework?

 .NET Framework

 An environment for developing and executing
.NET applications

 Unified programming model, set of languages,
class libraries, infrastructure, components and
tools for application development

 Environment for controlled execution of
managed code

 It is commonly assumed that

 .NET platform == .NET Framework

.NET Framework Components

 Common Language Runtime (CLR)

 Environment for controlled execution of
programmed code – like a virtual machine

 Executes .NET applications

 Framework Class Library (FCL)

 Standard class library for .NET development

 Delivers basic functionality for developing: XML,
ADO.NET, LINQ, ASP.NET, WPF, WCF, WWF,
Silverlight, Web services, Windows Forms, ...

 SDK, compilers and tools

.NET Framework Architecture

 The OS manages the resources, the
processes and the users of the machine

 Provides to the applications some
services (threads, I/O, GDI+, DirectX,
COM, COM+, MSMQ, IIS, WMI, …)

 CLR is a separate process in the OS

Operating System (OS)

Operating System (OS)

Common Language Runtime (CLR)

 CLR manages the execution of
the.NET code

 Manages the memory,
concurrency, security, ...

.NET Framework Architecture (2)

CLR

Operating System (OS)

Common Language Runtime (CLR)

Base Class Library (BCL)

.NET Framework Architecture (3)

 Rich object-oriented library with
fundamental classes

 Input-output, collections, text
processing, networking, security,
multi-threading, …

Operating System (OS)

Common Language Runtime (CLR)

Base Class Library (BCL)

ADO.NET, LINQ and XML (Data Tier)

.NET Framework Architecture (4)

 Database access

 ADO.NET, LINQ, LINQ-to-SQL and
Entity Framework

 Strong XML support

Operating System (OS)

Common Language Runtime (CLR)

Base Class Library (BCL)

ADO.NET, LINQ and XML (Data Tier)

.NET Framework Architecture (5)

WCF and WWF (Communication and Workflow Tier)

 Windows Communication
Foundation (WCF) and Windows
Workflow Foundation (WWF) for
the SOA world

Operating System (OS)

Common Language Runtime (CLR)

Base Class Library (BCL)

ADO.NET, LINQ and XML (Data Tier)

.NET Framework Architecture (6)

WCF and WWF (Communication and Workflow Tier)

ASP.NET
Web Forms, MVC, AJAX
Mobile Internet Toolkit

Windows
Forms

WPF Silverlight

 User interface technologies: Web based,
Windows GUI, WPF, Silverlight, mobile, …

Operating System (OS)

Common Language Runtime (CLR)

Base Class Library (BCL)

ADO.NET, LINQ and XML (Data Tier)

.NET Framework Architecture (7)

WCF and WWF (Communication and Workflow Tier)

ASP.NET
Web Forms, MVC, AJAX
Mobile Internet Toolkit

Windows
Forms

WPF Silverlight

C# C++ VB.NET J# F# JScript Perl Delphi …

 Programming language on your flavor!

.NET Framework Versions

15

Common Language
Runtime (CLR)

The Heart of .NET Framework

Common Language Runtime (CLR)

 Managed execution environment

 Controls the execution of managed .NET
programming code

 Something like virtual machine

 Like the Java Virtual Machine (JVM)

 Not an interpreter

 Compilation on-demand is used

 Known as Just In Time (JIT) compilation

Responsibilities of CLR

 Execution of the IL code and the JIT
compilation

 Managing memory and application resources

 Ensuring type safety

 Interaction with the OS

 Managing security

 Code access security

 Role-based security

Responsibilities of CLR (2)

 Managing exceptions

 Managing concurrency – controlling the

parallel execution of application threads

 Managing application domains and their

isolation

 Interaction with unmanaged code

 Supporting debug /

profile of .NET code

CLR Architecture

Class Loader

IL to Native
JIT Compiler

Code
Manager

Garbage
Collector

Security Engine Debug Engine

Type Checker Exception Manager

Thread Support COM Marshaler

Base Class Library Support

Managed and
Unmanaged Code

What is the Difference?

Managed Code

 CLR executed code is called managed code

 Represents programming code in the low level
language MSIL (MS Intermediate Language)

 Contains metadata

 Description of classes, interfaces, properties,
fields, methods, parameters, etc.

 Programs, written in any .NET language are

 Compiled to managed code (MSIL)

 Packaged as assemblies (.exe or .dll files)

Managed Code (2)

 Object-oriented

 Secure

 Reliable

 Protected from irregular use of types (type-safe)

 Allows integration between components and
data types of different programming
languages

 Portable between different platforms

 Windows, Linux, Max OS X, etc.

Memory Management

 CLR manages memory automatically

 Dynamically loaded objects are stored in the
managed heap

 Unusable objects are automatically cleaned up
by the garbage collector

 Some of the big problems are solved

 Memory leaks

 Access to freed or unallocated memory

 Objects are accessed through a reference

Intermediate

Language (MSIL)

Intermediate Language
(MSIL, IL, CIL)

 Low level language (machine language) for the
.NET CLR

 Has independent set of CPU instructions

 Loading and storing data, calling methods

 Arithmetic and logical operations

 Exception handling

 Etc.

 MSIL is converted to instructions for the
current physical CPU by the JIT compiler

Sample MSIL Program

.method private hidebysig static void Main() cil managed

{

.entrypoint

// Code size 11 (0xb)

.maxstack 8

ldstr "Hello, world!"

call void

[mscorlib]System.Console::WriteLine(string)

ret

} // end of method HelloWorld::Main

Compilation and Execution

Compilation

Execution

JIT
compiler

Machine
code

MSIL
Code

Metadata

Source
code

Language
compiler

Assembly
(.EXE or
.DLL file)

When given

method is called

for the first time

Pre-compilation

during the install

(NGEN)

QUIZZ

 Quelles sont les principales composantes du Framework .NET?

 C'est quoi le CLR?

 Comment peut on expliquer le caractère multi-langage de la

plateforme .NET?

 C'est le FCL?

 Expliquer le processus de compilation et exécution dans la

Plateforme .NET?

 Quelle est la différence entre un code « Managed » et

« Unmanaged » language?
31

.NET Applications
Assemblies, Metadata and Applications

.NET Assemblies
 .NET assemblies:

 Self-containing .NET components

 Stored in .DLL and .EXE files

 Contain list of classes, types and resources

 Smallest deployment unit in CLR

 Have unique version number

 .NET deployment model

 No version conflicts (forget the "DLL hell")

 Supports side-by-side execution of different
versions of the same assembly

Metadata in the Assemblies

 Metadata in the .NET assemblies

 Data about data contained in the assembly

 Integral part of the assembly

 Generated by the .NET languages compiler

 Describes all classes, their class members,
versions, resources, etc.

Metadata in Assemblies

Type Description

Assembly Description

Classes, interfaces, inner types, base
classes, implemented interfaces,
member fields, properties, methods,
method parameters, return value,
attributes, etc.

Dependencies on other assemblies
Security permissions
Exported types

[digital
signature]

Name
Version
Localization

.NET Applications

 Configurable executable .NET units

 Consist of one or more assemblies

 Installed by "copy / paste"

 No complex registration of components

 Different applications use different versions of
common assemblies

 No conflicts due to their "strong name"

 Easy installation, un-installation and update

Common Language
Infrastructure

How .NET Supports Multiple Languages?

Common Language Infrastructure

 Common Language Infrastructure (CLI)

 Open specification developed by Microsoft
(ECMA – 335)

 Multiple high-level languages run on different
platforms without changes in the source code
or pre-compilation

 Standardized part of CLR

 .NET Framework is CLI implementation for
Windows

 Mono is CLI implementation for Linux

Supporting_Docs/ECMA-335.pdf

Common Language
Infrastructure (2)

 CLI describes the following aspects:

 The Common Type System (CTS)

 Assemblies and metadata

 Common Language Specification (CLS)

.NET Code Compilation
and Execution

Common Type System (CTS)

 CTS defines the CLR supported types of data
and the operations over them

 Ensures data level compatibility between
different .NET languages

 E.g. string in C# is the same like String in
VB.NET and in J#

 Value types and reference types

 All types derive from System.Object

Common Language
Specification (CLS)

 CLS is a system of rules and obligations, that
all .NET languages must obey

 Ensures compatibility and ease of interaction
between .NET languages

 Example: CLS enforces all .NET languages to
be object-oriented

 When using non-CLS-compliant programming
techniques you lose compatibility with the
other .NET languages

The .NET Languages
C#, VB.NET, C++, J#, etc.

.NET Languages

 .NET languages by Microsoft

 C#, VB.NET, Managed C++, J#, F#, JScript

 .NET languages by third parties

 Object Pascal, Perl, Python, COBOL, Haskell,
Oberon, Scheme, Smalltalk…

 Different languages can be mixed in a single
application

 Cross-language inheritance of types and
exception handling

C# Language

 C# is mixture between C++, Java

 Fully object-oriented by design

 Component-oriented programming model

 Components, properties and events

 No header files like C/C++

 Suitable for GUI and Web applications

 XML based documentation

 In C# all data types are objects

 Example: 5.ToString() is a valid call

C# Language – Example

 C# is standardized by ECMA and ISO

 Example of C# program:

using System;

class NumbersFrom1to100
{

static void Main()
{

for (int i=1; i<=100; i++)
{

Console.WriteLine(i);
}

}
}

Framework Class
Library (FCL)

Standard Out-of-the-box .NET APIs

Framework Class Library (FCL)

 Framework Class Library is the standard
.NET Framework library of out-of-the-box
reusable classes and components (APIs)

Base Class Library (BCL)

ADO.NET, LINQ and XML (Data Tier)

WCF and WWF (Communication and Workflow Tier)

ASP.NET
Web Forms, MVC, AJAX
Mobile Internet Toolkit

Windows
Forms

WPF Silverlight

FCL Namespaces

ADO.NET, LINQ and XML (Data Tier)

WCF and WWF (Communication and Workflow Tier)

ASP.NET
Web Forms, MVC, AJAX
Mobile Internet Toolkit

Windows
Forms

WPF & Silverlight

System.Web

System.Web.Mvc

System.Windows
.Forms

System.Drawing

System.Windows

System.Windows.Media

System.Windows.Markup

System.ServiceModel System.Activities System.Workflow

System.Data System.Linq

System.Data.Linq

System.Xml

System.Xml.Linq System.Data.Entity

Visual Studio

 Visual Studio is powerful Integrated
Development Environment (IDE) for .NET
Developers

 Create, edit, compile and run .NET applications

 Different languages – C#, C++, VB.NET, J#, …

 Flexible code editor

 Powerful debugger

 Integrated with SQL Server and IIS

 Strong support of Web services, WCF and WWF

Visual Studio (2)

 Visual programming

 Component-oriented, event based

 Managed and unmanaged code

 Helpful wizards and editors

 Windows Forms Designer

 WCF / Silverlight Designer

 ASP.NET Web Forms Designer

 ADO.NET / LINQ-to-SQL / XML Data Designer

 Many third party extensions

Visual Studio IDE

Installation de VS

 Microsoft Visual Studio Community 2017

 Téléchargeable via l’url

https://visualstudio.microsoft.com/thank-you-
downloading-visual-studio/?sku=Community

54

https://visualstudio.microsoft.com/thank-you-downloading-visual-studio/?sku=Community

Installation de VS

55

.NET Framework Overview

Questions?

