
Object-Oriented
Programming with C#

UIC School of Engineering – MIAGE 2

Table of Contents

1. Defining Classes

2. Access Modifiers

3. Constructors

4. Fields, Constants and Properties

5. Static Members

6. Inheritance

7. Polymorphism

8. Interfaces

2

OOP and .NET

 In .NET Framework the object-oriented approach
has roots at the deepest architectural level

 All .NET applications are object-oriented

 All .NET languages are object-oriented

 The class concept from OOP has two realizations:

 Classes and structures

 There is no multiple inheritance in .NET

 Still classes can implement several interfaces at the
same time

3

Defining Classes

What is Class?

 The formal definition of class:

 Classes define:

 Set of attributes Represented by fields and properties

 Set of actions (behavior) Represented by methods

Classes act as templates from which an
instance of an object is created at run
time. Classes define the properties of
the object and the methods used to
control the object's behavior.

5

Classes in OOP

 Classes model real-world objects and define

 Attributes (state, properties, fields)

 Behavior (methods, operations)

 Classes describe structure of objects

 Objects describe particular instance of a class

 Properties hold information about the
modeled object relevant to the problem

 Operations implement object behavior

6

Objects – Example

Account

+Owner: string

+Ammount: double

+Suspend()

+Deposit(sum:double)

+Withdraw(sum:double)

Class AmineAccount

+Owner=“Amine Kolin"

+Ammount=5000.0

souadAccount

+Owner=“Souad Dali"

+Ammount=1825.33

IbrahimAccount

+Owner=“Ibrahim Kal"

+Ammount=25.0

Object

Object

Object

7

Simple Class Definition

public class Cat : Animal
{

private string name;
private string owner;

public Cat(string name, string owner)
{

this.name = name;
this.owner = owner;

}

public string Name
{

get { return name; }
set { name = value; }

}

Fields

Constructor

Property

Begin of class definition

Inherited (base) class

8

Simple Class Definition (2)

public string Owner
{

get { return owner;}
set { owner = value; }

}

public void SayMiau()
{

Console.WriteLine("Miauuuuuuu!");
}

}

Method

End of class
definition

9

Classes and Their Members
 Classes have members

 Fields, constants, methods, properties,
indexers, events, operators, constructors,
destructors

 Inner types (inner classes, structures,
interfaces, delegates, ...)

 Members have modifiers (scope)

 public, private, protected, internal, protected
internal

 Members can be

 static (common) or for a given type 10

Class Definition and Members

 Class definition consists of:

 Class declaration

 Inherited class or implemented interfaces

 Fields (static or not)

 Constructors (static or not)

 Properties (static or not)

 Methods (static or not)

 Events, inner types, etc.

11

Access Modifiers
Public, Private, Protected, Internal, Protected Internal

Access Modifiers
 Class members can have access modifiers

 Used to restrict the classes able to access them

 Supports the OOP principle "encapsulation"

 Class members can be:

 public – accessible from any class

 protected – accessible from the class itself and all its
descendent classes

 private – accessible from the class itself only

 internal – accessible from the current assembly (used by
default)

 Protected Internal : Protected (anywhere in derived class
inside or outside the assembly)+ Internal (with instance of
class only inside the assembly)

13

Using Classes

 How to use classes?

 Create a new instance

 Access the properties of the class

 Invoke methods

 Handle events

 How to define classes?

 Create new class and define its members

 Create new class using some other as base class

14

How to Use Classes (Non-Static)?

1. Create an instance

 Initialize fields

2. Manipulate instance

 Read / change properties

 Invoke methods

 Handle events

3. Release occupied resources

 Done automatically in most cases

15

Constructors
Defining and Using Class Constructors

What is Constructor?

 Constructors are special methods

 Invoked when creating a new instance of an
object

 Used to initialize the fields of the instance

 Constructors has the same name as the class

 Have no return type

 Can have parameters

 Can be private, protected, internal,
public

17

Defining Constructors

public class Point
{

private int xCoord;
private int yCoord;

// Simple default constructor
public Point()
{

xCoord = 0;
yCoord = 0;

}

// More code ...
}

 Class Point with parameterless constructor:

18

Defining Constructors (2)

public class Person
{

private string name;
private int age;

// Default constructor
public Person()
{

name = null;
age = 0;

}

// Constructor with parameters
public Person(string name, int age)
{

this.name = name;
this.age = age;

}

// More code comes here …
}

As rule constructors
should initialize all

own class fields.

19

Constructors and Initialization
 Pay attention when using inline initialization!

public class ClockAlarm
{

private int hours = 9; // Inline initialization
private int minutes = 0; // Inline initialization

// Default constructor

public ClockAlarm()
{ }

// Constructor with parameters

public ClockAlarm(int hours, int minutes)
{

this.hours = hours; // Invoked after the inline
this.minutes = minutes; // initialization!

}

// More code comes here …

}

20

Chaining Constructors Calls
 Reusing the constructors

public class Point
{

private int xCoord;
private int yCoord;

public Point() : this(0,0) // Reuse the constructor
{
}

public Point(int xCoord, int yCoord)
{
this.xCoord = xCoord;
this.yCoord = yCoord;

}

// More code comes here …
}

21

Fields, Constants
and Properties

Fields

 Fields contain data for the class instance

 Can be arbitrary type

 Have given scope

 Can be declared with a specific value

class Student
{

private string firstName;
private string lastName;
private int course = 1;
private string speciality;
protected Course[] coursesTaken;
private string remarks = "(no remarks)";

}

23

Constants

 Constant fields are defined like fields, but:

 Defined with const

 Must be initialized at their definition

 Their value can not be changed at runtime

public class MathConstants
{

public const string PI_SYMBOL = "π";
public const double PI = 3.1415926535897932385;
public const double E = 2.7182818284590452354;
public const double LN10 = 2.30258509299405;
public const double LN2 = 0.693147180559945;

}

24

Read-Only Fields

 Initialized at the definition or in the constructor

 Can not be modified further

 Defined with the keyword readonly

 Represent runtime constants

public class ReadOnlyExample
{

private readonly int size;
public ReadOnlyExample(int aSize)
{
size = aSize; // can not be further modified!

}
}

25

The Role of Properties

 Expose object's data to the outside world

 Control how the data is manipulated

 Properties can be:

 Read-only

 Write-only

 Read and write

 Give good level of abstraction

 Make writing code easier

26

Defining Properties in C#

 Properties should have:

 Access modifier (public, protected, etc.)

 Return type

 Unique name

 Get and / or Set part

 Can contain code processing data in specific
way, e.g. validation logic

27

Defining Properties – Example

public class Point
{

private int xCoord;
private int yCoord;

public int XCoord
{

get { return xCoord; }
set { xCoord = value; }

}

public int YCoord
{

get { return yCoord; }
set { yCoord = value; }

}

// More code ...
}

28

Dynamic Properties

 Properties are not obligatory bound to a class
field – can be calculated dynamically:

public class Rectangle
{

private float width;
private float height;

// More code ...

public float Area
{

get
{

return width * height;
}

}
}

29

Automatic Properties

 Properties could be defined without an
underlying field behind them

 It is automatically created by the C# compiler

30

class UserProfile
{

public int UserId { get; set; }
public string FirstName { get; set; }
public string LastName { get; set; }

}
…
UserProfile profile = new UserProfile() {

FirstName = "Steve",
LastName = "Balmer",
UserId = 91112

};

Defining Classes
Example

Task: Define Class Dog

 Our task is to define a simple class that
represents information about a dog

 The dog should have name and breed

 If there is no name or breed assigned
to the dog, it should be named "Balkan"
and its breed should be "Street excellent"

 It should be able to view and change the name
and the breed of the dog

 The dog should be able to bark

32

Defining Class Dog – Example

public class Dog
{

private string name;
private string breed;

public Dog()
{

this.name = "Balkan";
this.breed = "Street excellent";

}

public Dog(string name, string breed)
{

this.name = name;
this.breed = breed;

}
// (example continues)

33

Defining Class Dog – Example (2)

public string Name
{

get { return name; }
set { name = value; }

}

public string Breed
{

get { return breed; }
set { breed = value; }

}

public void SayBau()
{

Console.WriteLine("{0} said: Bauuuuuu!", name);
}

}

34

Using Classes and Objects

Task: Dog Meeting

 Our task is as follows:

 Create 3 dogs

 First should be named “Sharo”, second – “Rex”
and the last – left without name

 Add all dogs in an array

 Iterate through the array elements and ask
each dog to bark

 Note:

 Use the Dog class from the previous example!

36

Dog Meeting – Example

static void Main()
{

Console.WriteLine("Enter first dog's name: ");
dogName = Console.ReadLine();
Console.WriteLine("Enter first dog's breed: ");
dogBreed = Console.ReadLine();

// Using the Dog constructor to set name and breed
Dog firstDog = new Dog(dogName, dogBreed);
Dog secondDog = new Dog();
Console.WriteLine("Enter second dog's name: ");
dogName = Console.ReadLine();
Console.WriteLine("Enter second dog's breed: ");
dogBreed = Console.ReadLine();

// Using properties to set name and breed
secondDog.Name = dogName;
secondDog.Breed = dogBreed;

}

37

What is a Namespace?

 Namespaces are used to organize the source
code into more logical and manageable way

 Namespaces can contain

 Definitions of classes, structures, interfaces and
other types and other namespaces

 Namespaces can contain other namespaces

 For example:

 System namespace contains Data namespace

 The name of the nested namespace is
System.Data

38

Full Class Names

 A full name of a class is the name of the class
preceded by the name of its namespace

 Example:

 Array class, defined in the System namespace

 The full name of the class is System.Array

<namespace_name>.<class_name>

39

Including Namespaces

 The using directive in C#:

 Allows using types in a namespace, without
specifying their full name

Example:

instead of

using <namespace_name>

using System;
DateTime date;

System.DateTime date;

40

Common Type System (CTS)

 CTS defines all data types supported in .NET
Framework

 Primitive types (e.g. int, float, object)

 Classes (e.g. String, Console, Array)

 Structures (e.g. DateTime)

 Arrays (e.g. int[], string[,])

 Etc.

 Object-oriented by design

41

Static Members
Static vs. Instance Members

Static Members

 Static members are associated with a type
rather than with an instance

 Defined with the modifier static

 Static can be used for

 Fields

 Properties

 Methods

 Events

 Constructors
43

Static vs. Non-Static

 Static:

 Associated with a type, not with an instance

 Non-Static:

 The opposite, associated with an instance

 Static:

 Initialized just before the type is used for the
first time

 Non-Static:

 Initialized when the constructor is called
44

Static Members – Example

public class SqrtPrecalculated
{

public const int MAX_VALUE = 10000;

// Static field
private static int[] sqrtValues;

// Static constructor
private static SqrtPrecalculated()
{

sqrtValues = new int[MAX_VALUE + 1];
for (int i = 0; i < sqrtValues.Length; i++)
{

sqrtValues[i] = (int)Math.Sqrt(i);
}

}
// (example continues)

45

Static Members – Example (2)

// Static method
public static int GetSqrt(int value)
{

return sqrtValues[value];
}

// The Main() method is always static
static void Main()
{

Console.WriteLine(GetSqrt(254));
}

}

46

Static Methods

 Static methods are common for all instances of
a class (shared between all instances)

 Returned value depends only on the passed

parameters

 No particular class instance is available

 Syntax:

 The name of the class, followed by the name of

the method, separated by dot

<class_name>.<method_name>(<parameters>)

47

Calling Static Methods – Examples

using System;

double radius = 2.9;

double area = Math.PI * Math.Pow(radius, 2);

Console.WriteLine("Area: {0}", area);

// Area: 26,4207942166902

double precise = 8.7654321;

double round3 = Math.Round(precise, 3);

double round1 = Math.Round(precise, 1);

Console.WriteLine(

"{0}; {1}; {2}", precise, round3, round1);

// 8,7654321; 8,765; 8,8

Constant
field

Static
method

Static
method

Static
method

48

Inheritance

Inheritance

 Inheritance is the ability of a class to implicitly
gain all members from another class

 Inheritance is fundamental concept in OOP

 The class whose methods are inherited is
called base (parent) class

 The class that gains new functionality is called
derived (child) class

 Inheritance establishes an is-a relationship
between classes: A is B

50

Inheritance (2)

 All class members are inherited

 Fields, methods, properties, …

 In C# classes could be inherited

 Inheritance allows creating deep inheritance
hierarchies

 In .NET there is no multiple inheritance,
except when implementing interfaces

51

How to Define Inheritance?

 We must specify the name of the base class
after the name of the derived

 In the constructor of the derived class we use
the keyword base to invoke the constructor of
the base class

public class Shape
{...}
public class Circle : Shape
{...}

public Circle (int x, int y) : base(x)
{...}

52

Inheritance – Example

public class Mammal
{

private int age;

public Mammal(int age)
{

this.age = age;
}

public int Age
{

get { return age; }
set { age = value; }

}

public void Sleep()
{

Console.WriteLine("Shhh! I'm sleeping!");
}

}

53

Inheritance – Example (2)

public class Dog : Mammal
{

private string breed;

public Dog(int age, string breed): base(age)
{

this.breed = breed;
}

public string Breed
{

get { return breed; }
set { breed = value; }

}

public void WagTail()
{

Console.WriteLine("Tail wagging...");
}

}

54

Inheritance – Example (3)

static void Main()
{

// Create 5 years old mammal
Mamal mamal = new Mamal(5);
Console.WriteLine(mamal.Age);
mamal.Sleep();

// Create a bulldog, 3 years old
Dog dog = new Dog("Bulldog", 3);
dog.Sleep();
dog.Age = 4;
Console.WriteLine("Age: {0}", dog.Age);
Console.WriteLine("Breed: {0}", dog.Breed);
dog.WagTail();

}

55

Polymorphism

Polymorphism

 Polymorphism is fundamental concept in
OOP

 The ability to handle the objects of a specific
class as instances of its parent class and to call
abstract functionality

 Polymorphism allows creating hierarchies with
more valuable logical structure

 Allows invoking abstract functionality without
caring how and where it is implemented

57

Polymorphism (2)

 Polymorphism is usually implemented
through:

 Virtual methods (virtual)

 Abstract methods (abstract)

 Methods from an interface (interface)

 In C# to override virtual method the keyword
override is used

58

Polymorphism – Example

class Person
{

public virtual void PrintName()
{

Console.WriteLine("I am a person.");
}

}

class Trainer : Person
{

public override void PrintName()
{

Console.WriteLine("I am a trainer.");
}

}

class Student : Person
{

public override void PrintName()
{

Console.WriteLine("I am a student.");
}

}

59

Polymorphism – Example (2)

static void Main()
{

Person[] persons =
{

new Person(),
new Trainer(),
new Student()

};
foreach (Person p in persons)
{

Console.WriteLine(p.PrintName());
}

// I am a person.
// I am a trainer.
// I am a student.

}

60

Interfaces and
Abstract Classes

Interfaces
 Describe a group of methods (operations),

properties and events

 Can be implemented by given class or
structure

 Define only the methods’ prototypes

 No concrete implementation

 Can be used to define abstract data types

 Can not be instantiated

 Members do not have scope modifier
and by default the scope is public

79

Interfaces – Example

public interface IPerson
{

string Name // property Name
{
get;
set;

}
DateTime DateOfBirth // property DateOfBirth
{
get;
set;

}
int Age // property Age (read-only)
{
get;
set;

}
}

80

Interfaces – Example (2)

interface IShape
{

void SetPosition(int x, int y);
int CalculateSurface();

}

interface IMovable
{

void Move(int deltaX, int deltaY);
}

interface IResizable
{

void Resize(int weight);
void Resize(int weightX, int weightY);
void ResizeByX(int weightX);
void ResizeByY(int weightY);

}

81

Interface Implementation

 Classes can implement (support) one or many
interfaces

 Interface realization must implement all its
methods

 If some methods do not have implementation
the class have to be declared as an abstract

82

Interface Implementation –
Example

class Rectangle : IShape, IMovable
{

private int x, y, width, height;
public void SetPosition(int x, int y) // IShape
{

this.x = x;
this.y = y;

}
public int CalculateSurface() // IShape
{

return this.width * this.height;
}
public void Move(int deltaX, int deltaY) // IMovable
{

this.x += deltaX;
this.y += deltaY;

}
}

83

IComparable<

 IComparable allows custom sorting of objects when

implemented. When a class implements this interface,

we must add the public method CompareTo(T). We

implement custom sorting for a class with IComparable.

 CompareTo(T) : Compares this instance with a specified

object or String and returns an integer that indicates

whether this instance precedes, follows, or appears in the

same position in the sort order as the specified object

or String.

 public int CompareTo (object value);

 public int CompareTo (string strB);
84

IComparable, CompareTo(object)

85

IComparable, CompareTo(string)

86

Abstract Classes

 Abstract method is a method without
implementation

 Left empty to be implemented by some
descendant class

 When a class contains at least one abstract
method, it is called abstract class

 Mix between class and interface

 Inheritors are obligated to
implement their abstract methods

 Can not be directly instantiated
87

Abstract Class – Example

abstract class MovableShape : IShape, IMovable
{

private int x, y;
public void Move(int deltaX, int deltaY)
{

this.x += deltaX;
this.y += deltaY;

}
public void SetPosition(int x, int y)
{

this.x = x;
this.y = y;

}
public abstract int CalculateSurface();

}

88

89

90

Questions?

Object-Oriented
Programming with C#

